Spaces:
Build error
Build error
onipot
commited on
Commit
β’
c939ae6
1
Parent(s):
78d3520
yolo deps
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitignore +3 -0
- face_detector/.dockerignore +220 -0
- face_detector/.gitignore +5 -0
- face_detector/.pre-commit-config.yaml +67 -0
- face_detector/Dockerfile +61 -0
- face_detector/LICENSE +674 -0
- face_detector/data/Argoverse.yaml +67 -0
- face_detector/data/GlobalWheat2020.yaml +53 -0
- face_detector/data/Objects365.yaml +104 -0
- face_detector/data/SKU-110K.yaml +52 -0
- face_detector/data/VOC.yaml +80 -0
- face_detector/data/VisDrone.yaml +61 -0
- face_detector/data/coco.yaml +44 -0
- face_detector/data/coco128.yaml +30 -0
- face_detector/data/hyps/hyp.finetune.yaml +39 -0
- face_detector/data/hyps/hyp.finetune_objects365.yaml +31 -0
- face_detector/data/hyps/hyp.scratch-high.yaml +34 -0
- face_detector/data/hyps/hyp.scratch-low.yaml +34 -0
- face_detector/data/hyps/hyp.scratch.yaml +34 -0
- face_detector/data/xView.yaml +102 -0
- face_detector/detect.py +342 -0
- face_detector/export.py +363 -0
- face_detector/hubconf.py +142 -0
- face_detector/main.py +36 -0
- face_detector/models/__init__.py +0 -0
- face_detector/models/common.py +469 -0
- face_detector/models/experimental.py +119 -0
- face_detector/models/hub/anchors.yaml +59 -0
- face_detector/models/hub/yolov3-spp.yaml +51 -0
- face_detector/models/hub/yolov3-tiny.yaml +41 -0
- face_detector/models/hub/yolov3.yaml +51 -0
- face_detector/models/hub/yolov5-bifpn.yaml +48 -0
- face_detector/models/hub/yolov5-fpn.yaml +42 -0
- face_detector/models/hub/yolov5-p2.yaml +54 -0
- face_detector/models/hub/yolov5-p6.yaml +56 -0
- face_detector/models/hub/yolov5-p7.yaml +67 -0
- face_detector/models/hub/yolov5-panet.yaml +48 -0
- face_detector/models/hub/yolov5l6.yaml +60 -0
- face_detector/models/hub/yolov5m6.yaml +60 -0
- face_detector/models/hub/yolov5n6.yaml +60 -0
- face_detector/models/hub/yolov5s-ghost.yaml +48 -0
- face_detector/models/hub/yolov5s-transformer.yaml +48 -0
- face_detector/models/hub/yolov5s6.yaml +60 -0
- face_detector/models/hub/yolov5x6.yaml +60 -0
- face_detector/models/tf.py +463 -0
- face_detector/models/yolo.py +327 -0
- face_detector/models/yolov5l.yaml +48 -0
- face_detector/models/yolov5m.yaml +48 -0
- face_detector/models/yolov5n.yaml +48 -0
- face_detector/models/yolov5s.yaml +48 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.jpg
|
2 |
+
__pycache__/
|
3 |
+
*.sh
|
face_detector/.dockerignore
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
2 |
+
#.git
|
3 |
+
.cache
|
4 |
+
.idea
|
5 |
+
runs
|
6 |
+
output
|
7 |
+
coco
|
8 |
+
storage.googleapis.com
|
9 |
+
|
10 |
+
data/samples/*
|
11 |
+
**/results*.csv
|
12 |
+
*.jpg
|
13 |
+
|
14 |
+
# Neural Network weights -----------------------------------------------------------------------------------------------
|
15 |
+
**/*.pt
|
16 |
+
**/*.pth
|
17 |
+
**/*.onnx
|
18 |
+
**/*.mlmodel
|
19 |
+
**/*.torchscript
|
20 |
+
**/*.torchscript.pt
|
21 |
+
**/*.tflite
|
22 |
+
**/*.h5
|
23 |
+
**/*.pb
|
24 |
+
*_saved_model/
|
25 |
+
*_web_model/
|
26 |
+
|
27 |
+
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
28 |
+
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
29 |
+
|
30 |
+
|
31 |
+
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
32 |
+
# Byte-compiled / optimized / DLL files
|
33 |
+
__pycache__/
|
34 |
+
*.py[cod]
|
35 |
+
*$py.class
|
36 |
+
|
37 |
+
# C extensions
|
38 |
+
*.so
|
39 |
+
|
40 |
+
# Distribution / packaging
|
41 |
+
.Python
|
42 |
+
env/
|
43 |
+
build/
|
44 |
+
develop-eggs/
|
45 |
+
dist/
|
46 |
+
downloads/
|
47 |
+
eggs/
|
48 |
+
.eggs/
|
49 |
+
lib/
|
50 |
+
lib64/
|
51 |
+
parts/
|
52 |
+
sdist/
|
53 |
+
var/
|
54 |
+
wheels/
|
55 |
+
*.egg-info/
|
56 |
+
wandb/
|
57 |
+
.installed.cfg
|
58 |
+
*.egg
|
59 |
+
|
60 |
+
# PyInstaller
|
61 |
+
# Usually these files are written by a python script from a template
|
62 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
63 |
+
*.manifest
|
64 |
+
*.spec
|
65 |
+
|
66 |
+
# Installer logs
|
67 |
+
pip-log.txt
|
68 |
+
pip-delete-this-directory.txt
|
69 |
+
|
70 |
+
# Unit test / coverage reports
|
71 |
+
htmlcov/
|
72 |
+
.tox/
|
73 |
+
.coverage
|
74 |
+
.coverage.*
|
75 |
+
.cache
|
76 |
+
nosetests.xml
|
77 |
+
coverage.xml
|
78 |
+
*.cover
|
79 |
+
.hypothesis/
|
80 |
+
|
81 |
+
# Translations
|
82 |
+
*.mo
|
83 |
+
*.pot
|
84 |
+
|
85 |
+
# Django stuff:
|
86 |
+
*.log
|
87 |
+
local_settings.py
|
88 |
+
|
89 |
+
# Flask stuff:
|
90 |
+
instance/
|
91 |
+
.webassets-cache
|
92 |
+
|
93 |
+
# Scrapy stuff:
|
94 |
+
.scrapy
|
95 |
+
|
96 |
+
# Sphinx documentation
|
97 |
+
docs/_build/
|
98 |
+
|
99 |
+
# PyBuilder
|
100 |
+
target/
|
101 |
+
|
102 |
+
# Jupyter Notebook
|
103 |
+
.ipynb_checkpoints
|
104 |
+
|
105 |
+
# pyenv
|
106 |
+
.python-version
|
107 |
+
|
108 |
+
# celery beat schedule file
|
109 |
+
celerybeat-schedule
|
110 |
+
|
111 |
+
# SageMath parsed files
|
112 |
+
*.sage.py
|
113 |
+
|
114 |
+
# dotenv
|
115 |
+
.env
|
116 |
+
|
117 |
+
# virtualenv
|
118 |
+
.venv*
|
119 |
+
venv*/
|
120 |
+
ENV*/
|
121 |
+
|
122 |
+
# Spyder project settings
|
123 |
+
.spyderproject
|
124 |
+
.spyproject
|
125 |
+
|
126 |
+
# Rope project settings
|
127 |
+
.ropeproject
|
128 |
+
|
129 |
+
# mkdocs documentation
|
130 |
+
/site
|
131 |
+
|
132 |
+
# mypy
|
133 |
+
.mypy_cache/
|
134 |
+
|
135 |
+
|
136 |
+
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
137 |
+
|
138 |
+
# General
|
139 |
+
.DS_Store
|
140 |
+
.AppleDouble
|
141 |
+
.LSOverride
|
142 |
+
|
143 |
+
# Icon must end with two \r
|
144 |
+
Icon
|
145 |
+
Icon?
|
146 |
+
|
147 |
+
# Thumbnails
|
148 |
+
._*
|
149 |
+
|
150 |
+
# Files that might appear in the root of a volume
|
151 |
+
.DocumentRevisions-V100
|
152 |
+
.fseventsd
|
153 |
+
.Spotlight-V100
|
154 |
+
.TemporaryItems
|
155 |
+
.Trashes
|
156 |
+
.VolumeIcon.icns
|
157 |
+
.com.apple.timemachine.donotpresent
|
158 |
+
|
159 |
+
# Directories potentially created on remote AFP share
|
160 |
+
.AppleDB
|
161 |
+
.AppleDesktop
|
162 |
+
Network Trash Folder
|
163 |
+
Temporary Items
|
164 |
+
.apdisk
|
165 |
+
|
166 |
+
|
167 |
+
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
168 |
+
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
169 |
+
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
170 |
+
|
171 |
+
# User-specific stuff:
|
172 |
+
.idea/*
|
173 |
+
.idea/**/workspace.xml
|
174 |
+
.idea/**/tasks.xml
|
175 |
+
.idea/dictionaries
|
176 |
+
.html # Bokeh Plots
|
177 |
+
.pg # TensorFlow Frozen Graphs
|
178 |
+
.avi # videos
|
179 |
+
|
180 |
+
# Sensitive or high-churn files:
|
181 |
+
.idea/**/dataSources/
|
182 |
+
.idea/**/dataSources.ids
|
183 |
+
.idea/**/dataSources.local.xml
|
184 |
+
.idea/**/sqlDataSources.xml
|
185 |
+
.idea/**/dynamic.xml
|
186 |
+
.idea/**/uiDesigner.xml
|
187 |
+
|
188 |
+
# Gradle:
|
189 |
+
.idea/**/gradle.xml
|
190 |
+
.idea/**/libraries
|
191 |
+
|
192 |
+
# CMake
|
193 |
+
cmake-build-debug/
|
194 |
+
cmake-build-release/
|
195 |
+
|
196 |
+
# Mongo Explorer plugin:
|
197 |
+
.idea/**/mongoSettings.xml
|
198 |
+
|
199 |
+
## File-based project format:
|
200 |
+
*.iws
|
201 |
+
|
202 |
+
## Plugin-specific files:
|
203 |
+
|
204 |
+
# IntelliJ
|
205 |
+
out/
|
206 |
+
|
207 |
+
# mpeltonen/sbt-idea plugin
|
208 |
+
.idea_modules/
|
209 |
+
|
210 |
+
# JIRA plugin
|
211 |
+
atlassian-ide-plugin.xml
|
212 |
+
|
213 |
+
# Cursive Clojure plugin
|
214 |
+
.idea/replstate.xml
|
215 |
+
|
216 |
+
# Crashlytics plugin (for Android Studio and IntelliJ)
|
217 |
+
com_crashlytics_export_strings.xml
|
218 |
+
crashlytics.properties
|
219 |
+
crashlytics-build.properties
|
220 |
+
fabric.properties
|
face_detector/.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/dataset.zip
|
2 |
+
/dataset
|
3 |
+
/test.json
|
4 |
+
/runs/*
|
5 |
+
/yolov5s.pt
|
face_detector/.pre-commit-config.yaml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define hooks for code formations
|
2 |
+
# Will be applied on any updated commit files if a user has installed and linked commit hook
|
3 |
+
|
4 |
+
default_language_version:
|
5 |
+
python: python3.8
|
6 |
+
|
7 |
+
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
|
8 |
+
ci:
|
9 |
+
autofix_prs: true
|
10 |
+
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
11 |
+
autoupdate_schedule: quarterly
|
12 |
+
# submodules: true
|
13 |
+
|
14 |
+
repos:
|
15 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
16 |
+
rev: v4.0.1
|
17 |
+
hooks:
|
18 |
+
- id: end-of-file-fixer
|
19 |
+
- id: trailing-whitespace
|
20 |
+
- id: check-case-conflict
|
21 |
+
- id: check-yaml
|
22 |
+
- id: check-toml
|
23 |
+
- id: pretty-format-json
|
24 |
+
- id: check-docstring-first
|
25 |
+
|
26 |
+
- repo: https://github.com/asottile/pyupgrade
|
27 |
+
rev: v2.23.1
|
28 |
+
hooks:
|
29 |
+
- id: pyupgrade
|
30 |
+
args: [--py36-plus]
|
31 |
+
name: Upgrade code
|
32 |
+
|
33 |
+
# TODO
|
34 |
+
#- repo: https://github.com/PyCQA/isort
|
35 |
+
# rev: 5.9.3
|
36 |
+
# hooks:
|
37 |
+
# - id: isort
|
38 |
+
# name: imports
|
39 |
+
|
40 |
+
# TODO
|
41 |
+
#- repo: https://github.com/pre-commit/mirrors-yapf
|
42 |
+
# rev: v0.31.0
|
43 |
+
# hooks:
|
44 |
+
# - id: yapf
|
45 |
+
# name: formatting
|
46 |
+
|
47 |
+
# TODO
|
48 |
+
#- repo: https://github.com/executablebooks/mdformat
|
49 |
+
# rev: 0.7.7
|
50 |
+
# hooks:
|
51 |
+
# - id: mdformat
|
52 |
+
# additional_dependencies:
|
53 |
+
# - mdformat-gfm
|
54 |
+
# - mdformat-black
|
55 |
+
# - mdformat_frontmatter
|
56 |
+
|
57 |
+
# TODO
|
58 |
+
#- repo: https://github.com/asottile/yesqa
|
59 |
+
# rev: v1.2.3
|
60 |
+
# hooks:
|
61 |
+
# - id: yesqa
|
62 |
+
|
63 |
+
- repo: https://github.com/PyCQA/flake8
|
64 |
+
rev: 3.9.2
|
65 |
+
hooks:
|
66 |
+
- id: flake8
|
67 |
+
name: PEP8
|
face_detector/Dockerfile
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
4 |
+
FROM nvcr.io/nvidia/pytorch:21.05-py3
|
5 |
+
|
6 |
+
# Install linux packages
|
7 |
+
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
|
8 |
+
|
9 |
+
# Install python dependencies
|
10 |
+
COPY requirements.txt .
|
11 |
+
RUN python -m pip install --upgrade pip
|
12 |
+
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
|
13 |
+
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2
|
14 |
+
RUN pip install --no-cache -U torch torchvision numpy
|
15 |
+
# RUN pip install --no-cache torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
|
16 |
+
|
17 |
+
# Create working directory
|
18 |
+
RUN mkdir -p /usr/src/app
|
19 |
+
WORKDIR /usr/src/app
|
20 |
+
|
21 |
+
# Copy contents
|
22 |
+
COPY . /usr/src/app
|
23 |
+
|
24 |
+
# Downloads to user config dir
|
25 |
+
ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
|
26 |
+
|
27 |
+
# Set environment variables
|
28 |
+
# ENV HOME=/usr/src/app
|
29 |
+
|
30 |
+
|
31 |
+
# Usage Examples -------------------------------------------------------------------------------------------------------
|
32 |
+
|
33 |
+
# Build and Push
|
34 |
+
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
35 |
+
|
36 |
+
# Pull and Run
|
37 |
+
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
38 |
+
|
39 |
+
# Pull and Run with local directory access
|
40 |
+
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
41 |
+
|
42 |
+
# Kill all
|
43 |
+
# sudo docker kill $(sudo docker ps -q)
|
44 |
+
|
45 |
+
# Kill all image-based
|
46 |
+
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
47 |
+
|
48 |
+
# Bash into running container
|
49 |
+
# sudo docker exec -it 5a9b5863d93d bash
|
50 |
+
|
51 |
+
# Bash into stopped container
|
52 |
+
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
|
53 |
+
|
54 |
+
# Clean up
|
55 |
+
# docker system prune -a --volumes
|
56 |
+
|
57 |
+
# Update Ubuntu drivers
|
58 |
+
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
|
59 |
+
|
60 |
+
# DDP test
|
61 |
+
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
face_detector/LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<http://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
face_detector/data/Argoverse.yaml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
|
3 |
+
# Example usage: python train.py --data Argoverse.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ Argoverse β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/Argoverse # dataset root dir
|
12 |
+
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
13 |
+
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
14 |
+
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 8 # number of classes
|
18 |
+
names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
|
19 |
+
|
20 |
+
|
21 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
+
download: |
|
23 |
+
import json
|
24 |
+
|
25 |
+
from tqdm import tqdm
|
26 |
+
from utils.general import download, Path
|
27 |
+
|
28 |
+
|
29 |
+
def argoverse2yolo(set):
|
30 |
+
labels = {}
|
31 |
+
a = json.load(open(set, "rb"))
|
32 |
+
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
|
33 |
+
img_id = annot['image_id']
|
34 |
+
img_name = a['images'][img_id]['name']
|
35 |
+
img_label_name = img_name[:-3] + "txt"
|
36 |
+
|
37 |
+
cls = annot['category_id'] # instance class id
|
38 |
+
x_center, y_center, width, height = annot['bbox']
|
39 |
+
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
40 |
+
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
41 |
+
width /= 1920.0 # scale
|
42 |
+
height /= 1200.0 # scale
|
43 |
+
|
44 |
+
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
|
45 |
+
if not img_dir.exists():
|
46 |
+
img_dir.mkdir(parents=True, exist_ok=True)
|
47 |
+
|
48 |
+
k = str(img_dir / img_label_name)
|
49 |
+
if k not in labels:
|
50 |
+
labels[k] = []
|
51 |
+
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
52 |
+
|
53 |
+
for k in labels:
|
54 |
+
with open(k, "w") as f:
|
55 |
+
f.writelines(labels[k])
|
56 |
+
|
57 |
+
|
58 |
+
# Download
|
59 |
+
dir = Path('../datasets/Argoverse') # dataset root dir
|
60 |
+
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
61 |
+
download(urls, dir=dir, delete=False)
|
62 |
+
|
63 |
+
# Convert
|
64 |
+
annotations_dir = 'Argoverse-HD/annotations/'
|
65 |
+
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
|
66 |
+
for d in "train.json", "val.json":
|
67 |
+
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
|
face_detector/data/GlobalWheat2020.yaml
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Global Wheat 2020 dataset http://www.global-wheat.com/
|
3 |
+
# Example usage: python train.py --data GlobalWheat2020.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ GlobalWheat2020 β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/GlobalWheat2020 # dataset root dir
|
12 |
+
train: # train images (relative to 'path') 3422 images
|
13 |
+
- images/arvalis_1
|
14 |
+
- images/arvalis_2
|
15 |
+
- images/arvalis_3
|
16 |
+
- images/ethz_1
|
17 |
+
- images/rres_1
|
18 |
+
- images/inrae_1
|
19 |
+
- images/usask_1
|
20 |
+
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
21 |
+
- images/ethz_1
|
22 |
+
test: # test images (optional) 1276 images
|
23 |
+
- images/utokyo_1
|
24 |
+
- images/utokyo_2
|
25 |
+
- images/nau_1
|
26 |
+
- images/uq_1
|
27 |
+
|
28 |
+
# Classes
|
29 |
+
nc: 1 # number of classes
|
30 |
+
names: ['wheat_head'] # class names
|
31 |
+
|
32 |
+
|
33 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
34 |
+
download: |
|
35 |
+
from utils.general import download, Path
|
36 |
+
|
37 |
+
# Download
|
38 |
+
dir = Path(yaml['path']) # dataset root dir
|
39 |
+
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
40 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
41 |
+
download(urls, dir=dir)
|
42 |
+
|
43 |
+
# Make Directories
|
44 |
+
for p in 'annotations', 'images', 'labels':
|
45 |
+
(dir / p).mkdir(parents=True, exist_ok=True)
|
46 |
+
|
47 |
+
# Move
|
48 |
+
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
49 |
+
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
50 |
+
(dir / p).rename(dir / 'images' / p) # move to /images
|
51 |
+
f = (dir / p).with_suffix('.json') # json file
|
52 |
+
if f.exists():
|
53 |
+
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|
face_detector/data/Objects365.yaml
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Objects365 dataset https://www.objects365.org/
|
3 |
+
# Example usage: python train.py --data Objects365.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ Objects365 β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/Objects365 # dataset root dir
|
12 |
+
train: images/train # train images (relative to 'path') 1742289 images
|
13 |
+
val: images/val # val images (relative to 'path') 5570 images
|
14 |
+
test: # test images (optional)
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 365 # number of classes
|
18 |
+
names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
|
19 |
+
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
|
20 |
+
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
|
21 |
+
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
|
22 |
+
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
|
23 |
+
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
|
24 |
+
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
|
25 |
+
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
|
26 |
+
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
|
27 |
+
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
|
28 |
+
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
|
29 |
+
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
|
30 |
+
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
|
31 |
+
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
|
32 |
+
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
|
33 |
+
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
|
34 |
+
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
|
35 |
+
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
|
36 |
+
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
|
37 |
+
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
|
38 |
+
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
|
39 |
+
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
|
40 |
+
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
|
41 |
+
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
|
42 |
+
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
|
43 |
+
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
|
44 |
+
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
|
45 |
+
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
|
46 |
+
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
|
47 |
+
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
|
48 |
+
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
|
49 |
+
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
|
50 |
+
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
|
51 |
+
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
|
52 |
+
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
|
53 |
+
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
|
54 |
+
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
|
55 |
+
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
|
56 |
+
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
|
57 |
+
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
|
58 |
+
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
|
59 |
+
|
60 |
+
|
61 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
62 |
+
download: |
|
63 |
+
from pycocotools.coco import COCO
|
64 |
+
from tqdm import tqdm
|
65 |
+
|
66 |
+
from utils.general import download, Path
|
67 |
+
|
68 |
+
# Make Directories
|
69 |
+
dir = Path(yaml['path']) # dataset root dir
|
70 |
+
for p in 'images', 'labels':
|
71 |
+
(dir / p).mkdir(parents=True, exist_ok=True)
|
72 |
+
for q in 'train', 'val':
|
73 |
+
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
74 |
+
|
75 |
+
# Download
|
76 |
+
url = "https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/"
|
77 |
+
download([url + 'zhiyuan_objv2_train.tar.gz'], dir=dir, delete=False) # annotations json
|
78 |
+
download([url + f for f in [f'patch{i}.tar.gz' for i in range(51)]], dir=dir / 'images' / 'train',
|
79 |
+
curl=True, delete=False, threads=8)
|
80 |
+
|
81 |
+
# Move
|
82 |
+
train = dir / 'images' / 'train'
|
83 |
+
for f in tqdm(train.rglob('*.jpg'), desc=f'Moving images'):
|
84 |
+
f.rename(train / f.name) # move to /images/train
|
85 |
+
|
86 |
+
# Labels
|
87 |
+
coco = COCO(dir / 'zhiyuan_objv2_train.json')
|
88 |
+
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
89 |
+
for cid, cat in enumerate(names):
|
90 |
+
catIds = coco.getCatIds(catNms=[cat])
|
91 |
+
imgIds = coco.getImgIds(catIds=catIds)
|
92 |
+
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
|
93 |
+
width, height = im["width"], im["height"]
|
94 |
+
path = Path(im["file_name"]) # image filename
|
95 |
+
try:
|
96 |
+
with open(dir / 'labels' / 'train' / path.with_suffix('.txt').name, 'a') as file:
|
97 |
+
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
98 |
+
for a in coco.loadAnns(annIds):
|
99 |
+
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
|
100 |
+
x, y = x + w / 2, y + h / 2 # xy to center
|
101 |
+
file.write(f"{cid} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
print(e)
|
face_detector/data/SKU-110K.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
|
3 |
+
# Example usage: python train.py --data SKU-110K.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ SKU-110K β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/SKU-110K # dataset root dir
|
12 |
+
train: train.txt # train images (relative to 'path') 8219 images
|
13 |
+
val: val.txt # val images (relative to 'path') 588 images
|
14 |
+
test: test.txt # test images (optional) 2936 images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 1 # number of classes
|
18 |
+
names: ['object'] # class names
|
19 |
+
|
20 |
+
|
21 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
+
download: |
|
23 |
+
import shutil
|
24 |
+
from tqdm import tqdm
|
25 |
+
from utils.general import np, pd, Path, download, xyxy2xywh
|
26 |
+
|
27 |
+
# Download
|
28 |
+
dir = Path(yaml['path']) # dataset root dir
|
29 |
+
parent = Path(dir.parent) # download dir
|
30 |
+
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
|
31 |
+
download(urls, dir=parent, delete=False)
|
32 |
+
|
33 |
+
# Rename directories
|
34 |
+
if dir.exists():
|
35 |
+
shutil.rmtree(dir)
|
36 |
+
(parent / 'SKU110K_fixed').rename(dir) # rename dir
|
37 |
+
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
|
38 |
+
|
39 |
+
# Convert labels
|
40 |
+
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
|
41 |
+
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
|
42 |
+
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
|
43 |
+
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
44 |
+
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
|
45 |
+
f.writelines(f'./images/{s}\n' for s in unique_images)
|
46 |
+
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
|
47 |
+
cls = 0 # single-class dataset
|
48 |
+
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
|
49 |
+
for r in x[images == im]:
|
50 |
+
w, h = r[6], r[7] # image width, height
|
51 |
+
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
52 |
+
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|
face_detector/data/VOC.yaml
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
|
3 |
+
# Example usage: python train.py --data VOC.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ VOC β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/VOC
|
12 |
+
train: # train images (relative to 'path') 16551 images
|
13 |
+
- images/train2012
|
14 |
+
- images/train2007
|
15 |
+
- images/val2012
|
16 |
+
- images/val2007
|
17 |
+
val: # val images (relative to 'path') 4952 images
|
18 |
+
- images/test2007
|
19 |
+
test: # test images (optional)
|
20 |
+
- images/test2007
|
21 |
+
|
22 |
+
# Classes
|
23 |
+
nc: 20 # number of classes
|
24 |
+
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
|
25 |
+
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
|
26 |
+
|
27 |
+
|
28 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
29 |
+
download: |
|
30 |
+
import xml.etree.ElementTree as ET
|
31 |
+
|
32 |
+
from tqdm import tqdm
|
33 |
+
from utils.general import download, Path
|
34 |
+
|
35 |
+
|
36 |
+
def convert_label(path, lb_path, year, image_id):
|
37 |
+
def convert_box(size, box):
|
38 |
+
dw, dh = 1. / size[0], 1. / size[1]
|
39 |
+
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
40 |
+
return x * dw, y * dh, w * dw, h * dh
|
41 |
+
|
42 |
+
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
|
43 |
+
out_file = open(lb_path, 'w')
|
44 |
+
tree = ET.parse(in_file)
|
45 |
+
root = tree.getroot()
|
46 |
+
size = root.find('size')
|
47 |
+
w = int(size.find('width').text)
|
48 |
+
h = int(size.find('height').text)
|
49 |
+
|
50 |
+
for obj in root.iter('object'):
|
51 |
+
cls = obj.find('name').text
|
52 |
+
if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
|
53 |
+
xmlbox = obj.find('bndbox')
|
54 |
+
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
55 |
+
cls_id = yaml['names'].index(cls) # class id
|
56 |
+
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
57 |
+
|
58 |
+
|
59 |
+
# Download
|
60 |
+
dir = Path(yaml['path']) # dataset root dir
|
61 |
+
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
62 |
+
urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
63 |
+
url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
64 |
+
url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
65 |
+
download(urls, dir=dir / 'images', delete=False)
|
66 |
+
|
67 |
+
# Convert
|
68 |
+
path = dir / f'images/VOCdevkit'
|
69 |
+
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
70 |
+
imgs_path = dir / 'images' / f'{image_set}{year}'
|
71 |
+
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
72 |
+
imgs_path.mkdir(exist_ok=True, parents=True)
|
73 |
+
lbs_path.mkdir(exist_ok=True, parents=True)
|
74 |
+
|
75 |
+
image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
|
76 |
+
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
77 |
+
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
78 |
+
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
79 |
+
f.rename(imgs_path / f.name) # move image
|
80 |
+
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|
face_detector/data/VisDrone.yaml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
|
3 |
+
# Example usage: python train.py --data VisDrone.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ VisDrone β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/VisDrone # dataset root dir
|
12 |
+
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
13 |
+
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
14 |
+
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 10 # number of classes
|
18 |
+
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
|
19 |
+
|
20 |
+
|
21 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
+
download: |
|
23 |
+
from utils.general import download, os, Path
|
24 |
+
|
25 |
+
def visdrone2yolo(dir):
|
26 |
+
from PIL import Image
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
def convert_box(size, box):
|
30 |
+
# Convert VisDrone box to YOLO xywh box
|
31 |
+
dw = 1. / size[0]
|
32 |
+
dh = 1. / size[1]
|
33 |
+
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
34 |
+
|
35 |
+
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
|
36 |
+
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
37 |
+
for f in pbar:
|
38 |
+
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
39 |
+
lines = []
|
40 |
+
with open(f, 'r') as file: # read annotation.txt
|
41 |
+
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
42 |
+
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
43 |
+
continue
|
44 |
+
cls = int(row[5]) - 1
|
45 |
+
box = convert_box(img_size, tuple(map(int, row[:4])))
|
46 |
+
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
47 |
+
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
|
48 |
+
fl.writelines(lines) # write label.txt
|
49 |
+
|
50 |
+
|
51 |
+
# Download
|
52 |
+
dir = Path(yaml['path']) # dataset root dir
|
53 |
+
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
54 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
55 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
56 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
57 |
+
download(urls, dir=dir)
|
58 |
+
|
59 |
+
# Convert
|
60 |
+
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
61 |
+
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|
face_detector/data/coco.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# COCO 2017 dataset http://cocodataset.org
|
3 |
+
# Example usage: python train.py --data coco.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ coco β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/coco # dataset root dir
|
12 |
+
train: train2017.txt # train images (relative to 'path') 118287 images
|
13 |
+
val: val2017.txt # train images (relative to 'path') 5000 images
|
14 |
+
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 80 # number of classes
|
18 |
+
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
19 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
20 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
21 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
22 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
23 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
24 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
25 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
26 |
+
'hair drier', 'toothbrush'] # class names
|
27 |
+
|
28 |
+
|
29 |
+
# Download script/URL (optional)
|
30 |
+
download: |
|
31 |
+
from utils.general import download, Path
|
32 |
+
|
33 |
+
# Download labels
|
34 |
+
segments = False # segment or box labels
|
35 |
+
dir = Path(yaml['path']) # dataset root dir
|
36 |
+
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
37 |
+
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
|
38 |
+
download(urls, dir=dir.parent)
|
39 |
+
|
40 |
+
# Download data
|
41 |
+
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
|
42 |
+
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
|
43 |
+
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
|
44 |
+
download(urls, dir=dir / 'images', threads=3)
|
face_detector/data/coco128.yaml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
3 |
+
# Example usage: python train.py --data coco128.yaml
|
4 |
+
# parent
|
5 |
+
# βββ yolov5
|
6 |
+
# βββ datasets
|
7 |
+
# βββ coco128 β downloads here
|
8 |
+
|
9 |
+
|
10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
+
path: ../datasets/coco128 # dataset root dir
|
12 |
+
train: images/train2017 # train images (relative to 'path') 128 images
|
13 |
+
val: images/train2017 # val images (relative to 'path') 128 images
|
14 |
+
test: # test images (optional)
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 80 # number of classes
|
18 |
+
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
19 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
20 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
21 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
22 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
23 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
24 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
25 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
26 |
+
'hair drier', 'toothbrush'] # class names
|
27 |
+
|
28 |
+
|
29 |
+
# Download script/URL (optional)
|
30 |
+
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
|
face_detector/data/hyps/hyp.finetune.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for VOC finetuning
|
3 |
+
# python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
# Hyperparameter Evolution Results
|
7 |
+
# Generations: 306
|
8 |
+
# P R mAP.5 mAP.5:.95 box obj cls
|
9 |
+
# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
|
10 |
+
|
11 |
+
lr0: 0.0032
|
12 |
+
lrf: 0.12
|
13 |
+
momentum: 0.843
|
14 |
+
weight_decay: 0.00036
|
15 |
+
warmup_epochs: 2.0
|
16 |
+
warmup_momentum: 0.5
|
17 |
+
warmup_bias_lr: 0.05
|
18 |
+
box: 0.0296
|
19 |
+
cls: 0.243
|
20 |
+
cls_pw: 0.631
|
21 |
+
obj: 0.301
|
22 |
+
obj_pw: 0.911
|
23 |
+
iou_t: 0.2
|
24 |
+
anchor_t: 2.91
|
25 |
+
# anchors: 3.63
|
26 |
+
fl_gamma: 0.0
|
27 |
+
hsv_h: 0.0138
|
28 |
+
hsv_s: 0.664
|
29 |
+
hsv_v: 0.464
|
30 |
+
degrees: 0.373
|
31 |
+
translate: 0.245
|
32 |
+
scale: 0.898
|
33 |
+
shear: 0.602
|
34 |
+
perspective: 0.0
|
35 |
+
flipud: 0.00856
|
36 |
+
fliplr: 0.5
|
37 |
+
mosaic: 1.0
|
38 |
+
mixup: 0.243
|
39 |
+
copy_paste: 0.0
|
face_detector/data/hyps/hyp.finetune_objects365.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
lr0: 0.00258
|
4 |
+
lrf: 0.17
|
5 |
+
momentum: 0.779
|
6 |
+
weight_decay: 0.00058
|
7 |
+
warmup_epochs: 1.33
|
8 |
+
warmup_momentum: 0.86
|
9 |
+
warmup_bias_lr: 0.0711
|
10 |
+
box: 0.0539
|
11 |
+
cls: 0.299
|
12 |
+
cls_pw: 0.825
|
13 |
+
obj: 0.632
|
14 |
+
obj_pw: 1.0
|
15 |
+
iou_t: 0.2
|
16 |
+
anchor_t: 3.44
|
17 |
+
anchors: 3.2
|
18 |
+
fl_gamma: 0.0
|
19 |
+
hsv_h: 0.0188
|
20 |
+
hsv_s: 0.704
|
21 |
+
hsv_v: 0.36
|
22 |
+
degrees: 0.0
|
23 |
+
translate: 0.0902
|
24 |
+
scale: 0.491
|
25 |
+
shear: 0.0
|
26 |
+
perspective: 0.0
|
27 |
+
flipud: 0.0
|
28 |
+
fliplr: 0.5
|
29 |
+
mosaic: 1.0
|
30 |
+
mixup: 0.0
|
31 |
+
copy_paste: 0.0
|
face_detector/data/hyps/hyp.scratch-high.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for high-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.3 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.9 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.1 # image mixup (probability)
|
34 |
+
copy_paste: 0.1 # segment copy-paste (probability)
|
face_detector/data/hyps/hyp.scratch-low.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for low-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.5 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.0 # image mixup (probability)
|
34 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
face_detector/data/hyps/hyp.scratch.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for COCO training from scratch
|
3 |
+
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.5 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.0 # image mixup (probability)
|
34 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
face_detector/data/xView.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# xView 2018 dataset https://challenge.xviewdataset.org
|
3 |
+
# -------- DOWNLOAD DATA MANUALLY from URL above and unzip to 'datasets/xView' before running train command! --------
|
4 |
+
# Example usage: python train.py --data xView.yaml
|
5 |
+
# parent
|
6 |
+
# βββ yolov5
|
7 |
+
# βββ datasets
|
8 |
+
# βββ xView β downloads here
|
9 |
+
|
10 |
+
|
11 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12 |
+
path: ../datasets/xView # dataset root dir
|
13 |
+
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
14 |
+
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
15 |
+
|
16 |
+
# Classes
|
17 |
+
nc: 60 # number of classes
|
18 |
+
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
|
19 |
+
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
|
20 |
+
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
|
21 |
+
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
|
22 |
+
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
|
23 |
+
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
|
24 |
+
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
|
25 |
+
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
|
26 |
+
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
|
27 |
+
|
28 |
+
|
29 |
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
30 |
+
download: |
|
31 |
+
import json
|
32 |
+
import os
|
33 |
+
from pathlib import Path
|
34 |
+
|
35 |
+
import numpy as np
|
36 |
+
from PIL import Image
|
37 |
+
from tqdm import tqdm
|
38 |
+
|
39 |
+
from utils.datasets import autosplit
|
40 |
+
from utils.general import download, xyxy2xywhn
|
41 |
+
|
42 |
+
|
43 |
+
def convert_labels(fname=Path('xView/xView_train.geojson')):
|
44 |
+
# Convert xView geoJSON labels to YOLO format
|
45 |
+
path = fname.parent
|
46 |
+
with open(fname) as f:
|
47 |
+
print(f'Loading {fname}...')
|
48 |
+
data = json.load(f)
|
49 |
+
|
50 |
+
# Make dirs
|
51 |
+
labels = Path(path / 'labels' / 'train')
|
52 |
+
os.system(f'rm -rf {labels}')
|
53 |
+
labels.mkdir(parents=True, exist_ok=True)
|
54 |
+
|
55 |
+
# xView classes 11-94 to 0-59
|
56 |
+
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
|
57 |
+
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
|
58 |
+
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
|
59 |
+
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
|
60 |
+
|
61 |
+
shapes = {}
|
62 |
+
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
|
63 |
+
p = feature['properties']
|
64 |
+
if p['bounds_imcoords']:
|
65 |
+
id = p['image_id']
|
66 |
+
file = path / 'train_images' / id
|
67 |
+
if file.exists(): # 1395.tif missing
|
68 |
+
try:
|
69 |
+
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
|
70 |
+
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
|
71 |
+
cls = p['type_id']
|
72 |
+
cls = xview_class2index[int(cls)] # xView class to 0-60
|
73 |
+
assert 59 >= cls >= 0, f'incorrect class index {cls}'
|
74 |
+
|
75 |
+
# Write YOLO label
|
76 |
+
if id not in shapes:
|
77 |
+
shapes[id] = Image.open(file).size
|
78 |
+
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
|
79 |
+
with open((labels / id).with_suffix('.txt'), 'a') as f:
|
80 |
+
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
81 |
+
except Exception as e:
|
82 |
+
print(f'WARNING: skipping one label for {file}: {e}')
|
83 |
+
|
84 |
+
|
85 |
+
# Download manually from https://challenge.xviewdataset.org
|
86 |
+
dir = Path(yaml['path']) # dataset root dir
|
87 |
+
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
|
88 |
+
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
|
89 |
+
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
|
90 |
+
# download(urls, dir=dir, delete=False)
|
91 |
+
|
92 |
+
# Convert labels
|
93 |
+
convert_labels(dir / 'xView_train.geojson')
|
94 |
+
|
95 |
+
# Move images
|
96 |
+
images = Path(dir / 'images')
|
97 |
+
images.mkdir(parents=True, exist_ok=True)
|
98 |
+
Path(dir / 'train_images').rename(dir / 'images' / 'train')
|
99 |
+
Path(dir / 'val_images').rename(dir / 'images' / 'val')
|
100 |
+
|
101 |
+
# Split
|
102 |
+
autosplit(dir / 'images' / 'train')
|
face_detector/detect.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run inference on images, videos, directories, streams, etc.
|
4 |
+
Usage:
|
5 |
+
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
|
6 |
+
img.jpg # image
|
7 |
+
vid.mp4 # video
|
8 |
+
path/ # directory
|
9 |
+
path/*.jpg # glob
|
10 |
+
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
11 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
12 |
+
"""
|
13 |
+
|
14 |
+
import argparse
|
15 |
+
import os
|
16 |
+
import platform
|
17 |
+
import sys
|
18 |
+
from pathlib import Path
|
19 |
+
|
20 |
+
import cv2
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.backends.cudnn as cudnn
|
24 |
+
|
25 |
+
FILE = Path(__file__).resolve()
|
26 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
27 |
+
if str(ROOT) not in sys.path:
|
28 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
29 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
30 |
+
|
31 |
+
from models.experimental import attempt_load
|
32 |
+
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
33 |
+
from utils.general import (LOGGER, apply_classifier, check_file, check_img_size, check_imshow, check_requirements,
|
34 |
+
check_suffix, colorstr, increment_path, non_max_suppression, print_args, scale_coords,
|
35 |
+
strip_optimizer, xyxy2xywh)
|
36 |
+
from utils.plots import Annotator, colors
|
37 |
+
from utils.torch_utils import load_classifier, select_device, time_sync
|
38 |
+
import yaml
|
39 |
+
|
40 |
+
@torch.no_grad()
|
41 |
+
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
|
42 |
+
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
43 |
+
imgsz=640, # inference size (pixels)
|
44 |
+
conf_thres=0.25, # confidence threshold
|
45 |
+
iou_thres=0.45, # NMS IOU threshold
|
46 |
+
max_det=1000, # maximum detections per image
|
47 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
48 |
+
view_img=False, # show results
|
49 |
+
save_txt=False, # save results to *.txt
|
50 |
+
save_conf=False, # save confidences in --save-txt labels
|
51 |
+
save_crop=False, # save cropped prediction boxes
|
52 |
+
nosave=False, # do not save images/videos
|
53 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
54 |
+
agnostic_nms=False, # class-agnostic NMS
|
55 |
+
augment=False, # augmented inference
|
56 |
+
visualize=False, # visualize features
|
57 |
+
update=False, # update all models
|
58 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
59 |
+
name='exp', # save results to project/name
|
60 |
+
exist_ok=False, # existing project/name ok, do not increment
|
61 |
+
line_thickness=3, # bounding box thickness (pixels)
|
62 |
+
hide_labels=False, # hide labels
|
63 |
+
hide_conf=False, # hide confidences
|
64 |
+
half=False, # use FP16 half-precision inference
|
65 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
66 |
+
):
|
67 |
+
source = str(source)
|
68 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
69 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
70 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
71 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
72 |
+
if is_url and is_file:
|
73 |
+
source = check_file(source) # download
|
74 |
+
|
75 |
+
# Directories
|
76 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
77 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
78 |
+
|
79 |
+
# Initialize
|
80 |
+
device = select_device(device)
|
81 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
82 |
+
|
83 |
+
# Load model
|
84 |
+
w = str(weights[0] if isinstance(weights, list) else weights)
|
85 |
+
classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '']
|
86 |
+
check_suffix(w, suffixes) # check weights have acceptable suffix
|
87 |
+
pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans
|
88 |
+
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
89 |
+
if pt:
|
90 |
+
model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
|
91 |
+
stride = int(model.stride.max()) # model stride
|
92 |
+
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
93 |
+
if half:
|
94 |
+
model.half() # to FP16
|
95 |
+
if classify: # second-stage classifier
|
96 |
+
modelc = load_classifier(name='resnet50', n=2) # initialize
|
97 |
+
modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
|
98 |
+
elif onnx:
|
99 |
+
if dnn:
|
100 |
+
check_requirements(('opencv-python>=4.5.4',))
|
101 |
+
net = cv2.dnn.readNetFromONNX(w)
|
102 |
+
else:
|
103 |
+
check_requirements(('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime'))
|
104 |
+
import onnxruntime
|
105 |
+
session = onnxruntime.InferenceSession(w, None)
|
106 |
+
else: # TensorFlow models
|
107 |
+
import tensorflow as tf
|
108 |
+
if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
109 |
+
def wrap_frozen_graph(gd, inputs, outputs):
|
110 |
+
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import
|
111 |
+
return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
|
112 |
+
tf.nest.map_structure(x.graph.as_graph_element, outputs))
|
113 |
+
|
114 |
+
graph_def = tf.Graph().as_graph_def()
|
115 |
+
graph_def.ParseFromString(open(w, 'rb').read())
|
116 |
+
frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
|
117 |
+
elif saved_model:
|
118 |
+
model = tf.keras.models.load_model(w)
|
119 |
+
elif tflite:
|
120 |
+
if "edgetpu" in w: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
121 |
+
import tflite_runtime.interpreter as tflri
|
122 |
+
delegate = {'Linux': 'libedgetpu.so.1', # install libedgetpu https://coral.ai/software/#edgetpu-runtime
|
123 |
+
'Darwin': 'libedgetpu.1.dylib',
|
124 |
+
'Windows': 'edgetpu.dll'}[platform.system()]
|
125 |
+
interpreter = tflri.Interpreter(model_path=w, experimental_delegates=[tflri.load_delegate(delegate)])
|
126 |
+
else:
|
127 |
+
interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model
|
128 |
+
interpreter.allocate_tensors() # allocate
|
129 |
+
input_details = interpreter.get_input_details() # inputs
|
130 |
+
output_details = interpreter.get_output_details() # outputs
|
131 |
+
int8 = input_details[0]['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
132 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
133 |
+
|
134 |
+
# Dataloader
|
135 |
+
if webcam:
|
136 |
+
view_img = check_imshow()
|
137 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
138 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
|
139 |
+
bs = len(dataset) # batch_size
|
140 |
+
else:
|
141 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
|
142 |
+
bs = 1 # batch_size
|
143 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
144 |
+
|
145 |
+
# Run inference
|
146 |
+
if pt and device.type != 'cpu':
|
147 |
+
model(torch.zeros(1, 3,imgsz,imgsz).to(device).type_as(next(model.parameters()))) # run once
|
148 |
+
dt, seen = [0.0, 0.0, 0.0], 0
|
149 |
+
|
150 |
+
counter = -1
|
151 |
+
data = {}
|
152 |
+
|
153 |
+
for path, img, im0s, vid_cap, s in dataset:
|
154 |
+
counter += 1
|
155 |
+
coordinates = list()
|
156 |
+
t1 = time_sync()
|
157 |
+
if onnx:
|
158 |
+
img = img.astype('float32')
|
159 |
+
else:
|
160 |
+
img = torch.from_numpy(img).to(device)
|
161 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
162 |
+
img /= 255 # 0 - 255 to 0.0 - 1.0
|
163 |
+
if len(img.shape) == 3:
|
164 |
+
img = img[None] # expand for batch dim
|
165 |
+
t2 = time_sync()
|
166 |
+
dt[0] += t2 - t1
|
167 |
+
|
168 |
+
# Inference
|
169 |
+
if pt:
|
170 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
171 |
+
pred = model(img, augment=augment, visualize=visualize)[0]
|
172 |
+
elif onnx:
|
173 |
+
if dnn:
|
174 |
+
net.setInput(img)
|
175 |
+
pred = torch.tensor(net.forward())
|
176 |
+
else:
|
177 |
+
pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
|
178 |
+
else: # tensorflow model (tflite, pb, saved_model)
|
179 |
+
imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy
|
180 |
+
if pb:
|
181 |
+
pred = frozen_func(x=tf.constant(imn)).numpy()
|
182 |
+
elif saved_model:
|
183 |
+
pred = model(imn, training=False).numpy()
|
184 |
+
elif tflite:
|
185 |
+
if int8:
|
186 |
+
scale, zero_point = input_details[0]['quantization']
|
187 |
+
imn = (imn / scale + zero_point).astype(np.uint8) # de-scale
|
188 |
+
interpreter.set_tensor(input_details[0]['index'], imn)
|
189 |
+
interpreter.invoke()
|
190 |
+
pred = interpreter.get_tensor(output_details[0]['index'])
|
191 |
+
if int8:
|
192 |
+
scale, zero_point = output_details[0]['quantization']
|
193 |
+
pred = (pred.astype(np.float32) - zero_point) * scale # re-scale
|
194 |
+
pred[..., 0] *= imgsz[1] # x
|
195 |
+
pred[..., 1] *= imgsz[0] # y
|
196 |
+
pred[..., 2] *= imgsz[1] # w
|
197 |
+
pred[..., 3] *= imgsz[0] # h
|
198 |
+
pred = torch.tensor(pred)
|
199 |
+
t3 = time_sync()
|
200 |
+
dt[1] += t3 - t2
|
201 |
+
|
202 |
+
# NMS
|
203 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
204 |
+
dt[2] += time_sync() - t3
|
205 |
+
|
206 |
+
# Second-stage classifier (optional)
|
207 |
+
if classify:
|
208 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
209 |
+
|
210 |
+
# Process predictions
|
211 |
+
for i, det in enumerate(pred): # per image
|
212 |
+
seen += 1
|
213 |
+
if webcam: # batch_size >= 1
|
214 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
215 |
+
s += f'{i}: '
|
216 |
+
else:
|
217 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
218 |
+
|
219 |
+
p = Path(p) # to Path
|
220 |
+
save_path = str(save_dir / p.name) # img.jpg
|
221 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
222 |
+
s += '%gx%g ' % img.shape[2:] # print string
|
223 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
224 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
225 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
226 |
+
if len(det):
|
227 |
+
# Rescale boxes from img_size to im0 size
|
228 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
229 |
+
|
230 |
+
# Print results
|
231 |
+
for c in det[:, -1].unique():
|
232 |
+
n = (det[:, -1] == c).sum() # detections per class
|
233 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
234 |
+
|
235 |
+
# Write results
|
236 |
+
for *xyxy, conf, cls in reversed(det):
|
237 |
+
if save_txt: # Write to file
|
238 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
239 |
+
coordinates.append(xywh)
|
240 |
+
|
241 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
242 |
+
with open(txt_path + '.txt', 'a') as f:
|
243 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
244 |
+
|
245 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
246 |
+
c = int(cls) # integer class
|
247 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
248 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
249 |
+
|
250 |
+
data.update({f"img{counter}": {"name": p.name, "coordinates": coordinates}})
|
251 |
+
|
252 |
+
# Print time (inference-only)
|
253 |
+
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
254 |
+
|
255 |
+
# Stream results
|
256 |
+
im0 = annotator.result()
|
257 |
+
if view_img:
|
258 |
+
cv2.imshow(str(p), im0)
|
259 |
+
cv2.waitKey(1) # 1 millisecond
|
260 |
+
|
261 |
+
# Save results (image with detections)
|
262 |
+
if save_img:
|
263 |
+
if dataset.mode == 'image':
|
264 |
+
cv2.imwrite(save_path, im0)
|
265 |
+
else: # 'video' or 'stream'
|
266 |
+
if vid_path[i] != save_path: # new video
|
267 |
+
vid_path[i] = save_path
|
268 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
269 |
+
vid_writer[i].release() # release previous video writer
|
270 |
+
if vid_cap: # video
|
271 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
272 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
273 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
274 |
+
else: # stream
|
275 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
276 |
+
save_path += '.mp4'
|
277 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
278 |
+
vid_writer[i].write(im0)
|
279 |
+
|
280 |
+
|
281 |
+
import json
|
282 |
+
with open('test.json', 'w', encoding='utf-8') as f:
|
283 |
+
json.dump(data, f, ensure_ascii=False, indent=4)
|
284 |
+
# Print results
|
285 |
+
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
286 |
+
#LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
287 |
+
if save_txt or save_img:
|
288 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
289 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
290 |
+
if update:
|
291 |
+
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
292 |
+
|
293 |
+
|
294 |
+
def parse_opt():
|
295 |
+
parser = argparse.ArgumentParser()
|
296 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
|
297 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
|
298 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
299 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
300 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
301 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
302 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
303 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
304 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
305 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
306 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
307 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
308 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
309 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
310 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
311 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
312 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
313 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
314 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
315 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
316 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
317 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
318 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
319 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
320 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
321 |
+
opt = parser.parse_args()
|
322 |
+
|
323 |
+
params = None
|
324 |
+
with open("params.yaml", 'r') as fd:
|
325 |
+
params = yaml.safe_load(fd)
|
326 |
+
|
327 |
+
opt.imgsz = params['test']['image_size']
|
328 |
+
opt.conf_thres = params['test']['conf']
|
329 |
+
|
330 |
+
opt.imgsz *= 2 if len(str(opt.imgsz)) == 1 else 1 # expand
|
331 |
+
print_args(FILE.stem, opt)
|
332 |
+
return opt
|
333 |
+
|
334 |
+
|
335 |
+
def main(opt):
|
336 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
337 |
+
run(**vars(opt))
|
338 |
+
|
339 |
+
|
340 |
+
if __name__ == "__main__":
|
341 |
+
opt = parse_opt()
|
342 |
+
main(opt)
|
face_detector/export.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
|
4 |
+
TensorFlow exports authored by https://github.com/zldrobit
|
5 |
+
|
6 |
+
Usage:
|
7 |
+
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs
|
8 |
+
|
9 |
+
Inference:
|
10 |
+
$ python path/to/detect.py --weights yolov5s.pt
|
11 |
+
yolov5s.onnx (must export with --dynamic)
|
12 |
+
yolov5s_saved_model
|
13 |
+
yolov5s.pb
|
14 |
+
yolov5s.tflite
|
15 |
+
|
16 |
+
TensorFlow.js:
|
17 |
+
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
18 |
+
$ npm install
|
19 |
+
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
20 |
+
$ npm start
|
21 |
+
"""
|
22 |
+
|
23 |
+
import argparse
|
24 |
+
import os
|
25 |
+
import subprocess
|
26 |
+
import sys
|
27 |
+
import time
|
28 |
+
from pathlib import Path
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
33 |
+
|
34 |
+
FILE = Path(__file__).resolve()
|
35 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
36 |
+
if str(ROOT) not in sys.path:
|
37 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
38 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
39 |
+
|
40 |
+
from models.common import Conv
|
41 |
+
from models.experimental import attempt_load
|
42 |
+
from models.yolo import Detect
|
43 |
+
from utils.activations import SiLU
|
44 |
+
from utils.datasets import LoadImages
|
45 |
+
from utils.general import check_dataset, check_img_size, check_requirements, colorstr, file_size, print_args, \
|
46 |
+
url2file, LOGGER
|
47 |
+
from utils.torch_utils import select_device
|
48 |
+
|
49 |
+
|
50 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
51 |
+
# YOLOv5 TorchScript model export
|
52 |
+
try:
|
53 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
54 |
+
f = file.with_suffix('.torchscript.pt')
|
55 |
+
|
56 |
+
ts = torch.jit.trace(model, im, strict=False)
|
57 |
+
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
58 |
+
|
59 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
60 |
+
except Exception as e:
|
61 |
+
LOGGER.info(f'{prefix} export failure: {e}')
|
62 |
+
|
63 |
+
|
64 |
+
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
65 |
+
# YOLOv5 ONNX export
|
66 |
+
try:
|
67 |
+
check_requirements(('onnx',))
|
68 |
+
import onnx
|
69 |
+
|
70 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
71 |
+
f = file.with_suffix('.onnx')
|
72 |
+
|
73 |
+
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
74 |
+
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
75 |
+
do_constant_folding=not train,
|
76 |
+
input_names=['images'],
|
77 |
+
output_names=['output'],
|
78 |
+
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
79 |
+
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
80 |
+
} if dynamic else None)
|
81 |
+
|
82 |
+
# Checks
|
83 |
+
model_onnx = onnx.load(f) # load onnx model
|
84 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
85 |
+
# LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
|
86 |
+
|
87 |
+
# Simplify
|
88 |
+
if simplify:
|
89 |
+
try:
|
90 |
+
check_requirements(('onnx-simplifier',))
|
91 |
+
import onnxsim
|
92 |
+
|
93 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
94 |
+
model_onnx, check = onnxsim.simplify(
|
95 |
+
model_onnx,
|
96 |
+
dynamic_input_shape=dynamic,
|
97 |
+
input_shapes={'images': list(im.shape)} if dynamic else None)
|
98 |
+
assert check, 'assert check failed'
|
99 |
+
onnx.save(model_onnx, f)
|
100 |
+
except Exception as e:
|
101 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
102 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
103 |
+
LOGGER.info(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
|
104 |
+
except Exception as e:
|
105 |
+
LOGGER.info(f'{prefix} export failure: {e}')
|
106 |
+
|
107 |
+
|
108 |
+
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
109 |
+
# YOLOv5 CoreML export
|
110 |
+
ct_model = None
|
111 |
+
try:
|
112 |
+
check_requirements(('coremltools',))
|
113 |
+
import coremltools as ct
|
114 |
+
|
115 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
116 |
+
f = file.with_suffix('.mlmodel')
|
117 |
+
|
118 |
+
model.train() # CoreML exports should be placed in model.train() mode
|
119 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
120 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
121 |
+
ct_model.save(f)
|
122 |
+
|
123 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
124 |
+
except Exception as e:
|
125 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
126 |
+
|
127 |
+
return ct_model
|
128 |
+
|
129 |
+
|
130 |
+
def export_saved_model(model, im, file, dynamic,
|
131 |
+
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
132 |
+
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
|
133 |
+
# YOLOv5 TensorFlow saved_model export
|
134 |
+
keras_model = None
|
135 |
+
try:
|
136 |
+
import tensorflow as tf
|
137 |
+
from tensorflow import keras
|
138 |
+
from models.tf import TFModel, TFDetect
|
139 |
+
|
140 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
141 |
+
f = str(file).replace('.pt', '_saved_model')
|
142 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
143 |
+
|
144 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
145 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow
|
146 |
+
y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
147 |
+
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
148 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
149 |
+
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
150 |
+
keras_model.trainable = False
|
151 |
+
keras_model.summary()
|
152 |
+
keras_model.save(f, save_format='tf')
|
153 |
+
|
154 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
155 |
+
except Exception as e:
|
156 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
157 |
+
|
158 |
+
return keras_model
|
159 |
+
|
160 |
+
|
161 |
+
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
162 |
+
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
163 |
+
try:
|
164 |
+
import tensorflow as tf
|
165 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
166 |
+
|
167 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
168 |
+
f = file.with_suffix('.pb')
|
169 |
+
|
170 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
171 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
172 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
173 |
+
frozen_func.graph.as_graph_def()
|
174 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
175 |
+
|
176 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
177 |
+
except Exception as e:
|
178 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
179 |
+
|
180 |
+
|
181 |
+
def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
182 |
+
# YOLOv5 TensorFlow Lite export
|
183 |
+
try:
|
184 |
+
import tensorflow as tf
|
185 |
+
from models.tf import representative_dataset_gen
|
186 |
+
|
187 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
188 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
189 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
190 |
+
|
191 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
192 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
193 |
+
converter.target_spec.supported_types = [tf.float16]
|
194 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
195 |
+
if int8:
|
196 |
+
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
197 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
198 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
199 |
+
converter.target_spec.supported_types = []
|
200 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
201 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
202 |
+
converter.experimental_new_quantizer = False
|
203 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
204 |
+
|
205 |
+
tflite_model = converter.convert()
|
206 |
+
open(f, "wb").write(tflite_model)
|
207 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
211 |
+
|
212 |
+
|
213 |
+
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
214 |
+
# YOLOv5 TensorFlow.js export
|
215 |
+
try:
|
216 |
+
check_requirements(('tensorflowjs',))
|
217 |
+
import re
|
218 |
+
import tensorflowjs as tfjs
|
219 |
+
|
220 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
221 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
222 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
223 |
+
f_json = f + '/model.json' # *.json path
|
224 |
+
|
225 |
+
cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
|
226 |
+
f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
|
227 |
+
subprocess.run(cmd, shell=True)
|
228 |
+
|
229 |
+
json = open(f_json).read()
|
230 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
231 |
+
subst = re.sub(
|
232 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
233 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
234 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
235 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
|
236 |
+
r'{"outputs": {"Identity": {"name": "Identity"}, '
|
237 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
238 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
239 |
+
r'"Identity_3": {"name": "Identity_3"}}}',
|
240 |
+
json)
|
241 |
+
j.write(subst)
|
242 |
+
|
243 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
244 |
+
except Exception as e:
|
245 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
246 |
+
|
247 |
+
|
248 |
+
@torch.no_grad()
|
249 |
+
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
250 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
251 |
+
imgsz=(640, 640), # image (height, width)
|
252 |
+
batch_size=1, # batch size
|
253 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
254 |
+
include=('torchscript', 'onnx', 'coreml'), # include formats
|
255 |
+
half=False, # FP16 half-precision export
|
256 |
+
inplace=False, # set YOLOv5 Detect() inplace=True
|
257 |
+
train=False, # model.train() mode
|
258 |
+
optimize=False, # TorchScript: optimize for mobile
|
259 |
+
int8=False, # CoreML/TF INT8 quantization
|
260 |
+
dynamic=False, # ONNX/TF: dynamic axes
|
261 |
+
simplify=False, # ONNX: simplify model
|
262 |
+
opset=12, # ONNX: opset version
|
263 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
264 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
265 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
266 |
+
conf_thres=0.25 # TF.js NMS: confidence threshold
|
267 |
+
):
|
268 |
+
t = time.time()
|
269 |
+
include = [x.lower() for x in include]
|
270 |
+
tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs')) # TensorFlow exports
|
271 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
272 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)
|
273 |
+
|
274 |
+
# Load PyTorch model
|
275 |
+
device = select_device(device)
|
276 |
+
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
277 |
+
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
|
278 |
+
nc, names = model.nc, model.names # number of classes, class names
|
279 |
+
|
280 |
+
# Input
|
281 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
282 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
283 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
284 |
+
|
285 |
+
# Update model
|
286 |
+
if half:
|
287 |
+
im, model = im.half(), model.half() # to FP16
|
288 |
+
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
289 |
+
for k, m in model.named_modules():
|
290 |
+
if isinstance(m, Conv): # assign export-friendly activations
|
291 |
+
if isinstance(m.act, nn.SiLU):
|
292 |
+
m.act = SiLU()
|
293 |
+
elif isinstance(m, Detect):
|
294 |
+
m.inplace = inplace
|
295 |
+
m.onnx_dynamic = dynamic
|
296 |
+
# m.forward = m.forward_export # assign forward (optional)
|
297 |
+
|
298 |
+
for _ in range(2):
|
299 |
+
y = model(im) # dry runs
|
300 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
|
301 |
+
|
302 |
+
# Exports
|
303 |
+
if 'torchscript' in include:
|
304 |
+
export_torchscript(model, im, file, optimize)
|
305 |
+
if 'onnx' in include:
|
306 |
+
export_onnx(model, im, file, opset, train, dynamic, simplify)
|
307 |
+
if 'coreml' in include:
|
308 |
+
export_coreml(model, im, file)
|
309 |
+
|
310 |
+
# TensorFlow Exports
|
311 |
+
if any(tf_exports):
|
312 |
+
pb, tflite, tfjs = tf_exports[1:]
|
313 |
+
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
314 |
+
model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
|
315 |
+
topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
|
316 |
+
iou_thres=iou_thres) # keras model
|
317 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
318 |
+
export_pb(model, im, file)
|
319 |
+
if tflite:
|
320 |
+
export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
|
321 |
+
if tfjs:
|
322 |
+
export_tfjs(model, im, file)
|
323 |
+
|
324 |
+
# Finish
|
325 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
326 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
327 |
+
f'\nVisualize with https://netron.app')
|
328 |
+
|
329 |
+
|
330 |
+
def parse_opt():
|
331 |
+
parser = argparse.ArgumentParser()
|
332 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
333 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
334 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
335 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
336 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
337 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
338 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
339 |
+
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
340 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
341 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
342 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
343 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
344 |
+
parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
|
345 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
346 |
+
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
347 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
348 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
349 |
+
parser.add_argument('--include', nargs='+',
|
350 |
+
default=['torchscript', 'onnx'],
|
351 |
+
help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
|
352 |
+
opt = parser.parse_args()
|
353 |
+
print_args(FILE.stem, opt)
|
354 |
+
return opt
|
355 |
+
|
356 |
+
|
357 |
+
def main(opt):
|
358 |
+
run(**vars(opt))
|
359 |
+
|
360 |
+
|
361 |
+
if __name__ == "__main__":
|
362 |
+
opt = parse_opt()
|
363 |
+
main(opt)
|
face_detector/hubconf.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
import torch
|
7 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
|
13 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
14 |
+
"""Creates a specified YOLOv5 model
|
15 |
+
|
16 |
+
Arguments:
|
17 |
+
name (str): name of model, i.e. 'yolov5s'
|
18 |
+
pretrained (bool): load pretrained weights into the model
|
19 |
+
channels (int): number of input channels
|
20 |
+
classes (int): number of model classes
|
21 |
+
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
22 |
+
verbose (bool): print all information to screen
|
23 |
+
device (str, torch.device, None): device to use for model parameters
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
YOLOv5 pytorch model
|
27 |
+
"""
|
28 |
+
from pathlib import Path
|
29 |
+
|
30 |
+
from models.yolo import Model
|
31 |
+
from models.experimental import attempt_load
|
32 |
+
from utils.general import check_requirements, set_logging
|
33 |
+
from utils.downloads import attempt_download
|
34 |
+
from utils.torch_utils import select_device
|
35 |
+
|
36 |
+
file = Path(__file__).resolve()
|
37 |
+
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
|
38 |
+
set_logging(verbose=verbose)
|
39 |
+
|
40 |
+
save_dir = Path('') if str(name).endswith('.pt') else file.parent
|
41 |
+
path = (save_dir / name).with_suffix('.pt') # checkpoint path
|
42 |
+
try:
|
43 |
+
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
|
44 |
+
|
45 |
+
if pretrained and channels == 3 and classes == 80:
|
46 |
+
model = attempt_load(path, map_location=device) # download/load FP32 model
|
47 |
+
else:
|
48 |
+
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
|
49 |
+
model = Model(cfg, channels, classes) # create model
|
50 |
+
if pretrained:
|
51 |
+
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
52 |
+
msd = model.state_dict() # model state_dict
|
53 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
54 |
+
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
55 |
+
model.load_state_dict(csd, strict=False) # load
|
56 |
+
if len(ckpt['model'].names) == classes:
|
57 |
+
model.names = ckpt['model'].names # set class names attribute
|
58 |
+
if autoshape:
|
59 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
60 |
+
return model.to(device)
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
64 |
+
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
|
65 |
+
raise Exception(s) from e
|
66 |
+
|
67 |
+
|
68 |
+
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
69 |
+
# YOLOv5 custom or local model
|
70 |
+
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
71 |
+
|
72 |
+
|
73 |
+
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
74 |
+
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
75 |
+
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
|
76 |
+
|
77 |
+
|
78 |
+
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
79 |
+
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
80 |
+
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
81 |
+
|
82 |
+
|
83 |
+
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
84 |
+
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
85 |
+
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
|
86 |
+
|
87 |
+
|
88 |
+
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
89 |
+
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
90 |
+
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
|
91 |
+
|
92 |
+
|
93 |
+
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
94 |
+
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
95 |
+
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
96 |
+
|
97 |
+
|
98 |
+
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
99 |
+
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
100 |
+
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
|
101 |
+
|
102 |
+
|
103 |
+
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
104 |
+
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
105 |
+
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
106 |
+
|
107 |
+
|
108 |
+
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
109 |
+
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
110 |
+
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
|
111 |
+
|
112 |
+
|
113 |
+
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
114 |
+
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
115 |
+
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
|
116 |
+
|
117 |
+
|
118 |
+
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
119 |
+
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
120 |
+
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == '__main__':
|
124 |
+
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
125 |
+
# model = custom(path='path/to/model.pt') # custom
|
126 |
+
|
127 |
+
# Verify inference
|
128 |
+
import cv2
|
129 |
+
import numpy as np
|
130 |
+
from PIL import Image
|
131 |
+
from pathlib import Path
|
132 |
+
|
133 |
+
imgs = ['data/images/zidane.jpg', # filename
|
134 |
+
Path('data/images/zidane.jpg'), # Path
|
135 |
+
'https://ultralytics.com/images/zidane.jpg', # URI
|
136 |
+
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
137 |
+
Image.open('data/images/bus.jpg'), # PIL
|
138 |
+
np.zeros((320, 640, 3))] # numpy
|
139 |
+
|
140 |
+
results = model(imgs) # batched inference
|
141 |
+
results.print()
|
142 |
+
results.save()
|
face_detector/main.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from IPython.display import Image, clear_output # to display images
|
4 |
+
#from utils.google_utils import gdrive_downl#ad # to download models/datasets
|
5 |
+
|
6 |
+
# clear_output()
|
7 |
+
print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))
|
8 |
+
|
9 |
+
|
10 |
+
dataset_base = "/content/drive/MyDrive/AI Playground/face_detector/dataset/faces/"
|
11 |
+
|
12 |
+
|
13 |
+
dataset_yolo = dataset_base + "yolo/"
|
14 |
+
|
15 |
+
data_yaml = dataset_yolo + "data.yaml"
|
16 |
+
|
17 |
+
#pretrained = "/content/drive/MyDrive/AI Playground/face_detector/yolov5s.pt"
|
18 |
+
|
19 |
+
#trained_custom = "/content/drive/MyDrive/AI Playground/face_detector/dataset/faces/best_l.pt"
|
20 |
+
|
21 |
+
test_path = dataset_base + "yolo/test/images"
|
22 |
+
|
23 |
+
# define number of classes based on YAML
|
24 |
+
import yaml
|
25 |
+
with open("dataset/yolo/data.yaml", 'r') as stream:
|
26 |
+
num_classes = str(yaml.safe_load(stream)['nc'])
|
27 |
+
|
28 |
+
from IPython.core.magic import register_line_cell_magic
|
29 |
+
|
30 |
+
@register_line_cell_magic
|
31 |
+
def writetemplate(line, cell):
|
32 |
+
with open(line, 'w') as f:
|
33 |
+
f.write(cell.format(**globals()))
|
34 |
+
|
35 |
+
|
36 |
+
|
face_detector/models/__init__.py
ADDED
File without changes
|
face_detector/models/common.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Common modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import warnings
|
9 |
+
from copy import copy
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import requests
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from PIL import Image
|
18 |
+
from torch.cuda import amp
|
19 |
+
|
20 |
+
from utils.datasets import exif_transpose, letterbox
|
21 |
+
from utils.general import colorstr, increment_path, make_divisible, non_max_suppression, save_one_box, \
|
22 |
+
scale_coords, xyxy2xywh
|
23 |
+
from utils.plots import Annotator, colors
|
24 |
+
from utils.torch_utils import time_sync
|
25 |
+
|
26 |
+
LOGGER = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def autopad(k, p=None): # kernel, padding
|
30 |
+
# Pad to 'same'
|
31 |
+
if p is None:
|
32 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
33 |
+
return p
|
34 |
+
|
35 |
+
|
36 |
+
class Conv(nn.Module):
|
37 |
+
# Standard convolution
|
38 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
39 |
+
super().__init__()
|
40 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
41 |
+
self.bn = nn.BatchNorm2d(c2)
|
42 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return self.act(self.bn(self.conv(x)))
|
46 |
+
|
47 |
+
def forward_fuse(self, x):
|
48 |
+
return self.act(self.conv(x))
|
49 |
+
|
50 |
+
|
51 |
+
class DWConv(Conv):
|
52 |
+
# Depth-wise convolution class
|
53 |
+
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
54 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
55 |
+
|
56 |
+
|
57 |
+
class TransformerLayer(nn.Module):
|
58 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
59 |
+
def __init__(self, c, num_heads):
|
60 |
+
super().__init__()
|
61 |
+
self.q = nn.Linear(c, c, bias=False)
|
62 |
+
self.k = nn.Linear(c, c, bias=False)
|
63 |
+
self.v = nn.Linear(c, c, bias=False)
|
64 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
65 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
66 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
70 |
+
x = self.fc2(self.fc1(x)) + x
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class TransformerBlock(nn.Module):
|
75 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
76 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
77 |
+
super().__init__()
|
78 |
+
self.conv = None
|
79 |
+
if c1 != c2:
|
80 |
+
self.conv = Conv(c1, c2)
|
81 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
82 |
+
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
83 |
+
self.c2 = c2
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
if self.conv is not None:
|
87 |
+
x = self.conv(x)
|
88 |
+
b, _, w, h = x.shape
|
89 |
+
p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
|
90 |
+
return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)
|
91 |
+
|
92 |
+
|
93 |
+
class Bottleneck(nn.Module):
|
94 |
+
# Standard bottleneck
|
95 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
96 |
+
super().__init__()
|
97 |
+
c_ = int(c2 * e) # hidden channels
|
98 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
99 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
100 |
+
self.add = shortcut and c1 == c2
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
104 |
+
|
105 |
+
|
106 |
+
class BottleneckCSP(nn.Module):
|
107 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
108 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
109 |
+
super().__init__()
|
110 |
+
c_ = int(c2 * e) # hidden channels
|
111 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
112 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
113 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
114 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
115 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
116 |
+
self.act = nn.SiLU()
|
117 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
121 |
+
y2 = self.cv2(x)
|
122 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
123 |
+
|
124 |
+
|
125 |
+
class C3(nn.Module):
|
126 |
+
# CSP Bottleneck with 3 convolutions
|
127 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
128 |
+
super().__init__()
|
129 |
+
c_ = int(c2 * e) # hidden channels
|
130 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
131 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
132 |
+
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
133 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
134 |
+
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
138 |
+
|
139 |
+
|
140 |
+
class C3TR(C3):
|
141 |
+
# C3 module with TransformerBlock()
|
142 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
143 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
144 |
+
c_ = int(c2 * e)
|
145 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
146 |
+
|
147 |
+
|
148 |
+
class C3SPP(C3):
|
149 |
+
# C3 module with SPP()
|
150 |
+
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
151 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
152 |
+
c_ = int(c2 * e)
|
153 |
+
self.m = SPP(c_, c_, k)
|
154 |
+
|
155 |
+
|
156 |
+
class C3Ghost(C3):
|
157 |
+
# C3 module with GhostBottleneck()
|
158 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
159 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
160 |
+
c_ = int(c2 * e) # hidden channels
|
161 |
+
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
162 |
+
|
163 |
+
|
164 |
+
class SPP(nn.Module):
|
165 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
166 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
167 |
+
super().__init__()
|
168 |
+
c_ = c1 // 2 # hidden channels
|
169 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
170 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
171 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.cv1(x)
|
175 |
+
with warnings.catch_warnings():
|
176 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
177 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
178 |
+
|
179 |
+
|
180 |
+
class SPPF(nn.Module):
|
181 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
182 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
183 |
+
super().__init__()
|
184 |
+
c_ = c1 // 2 # hidden channels
|
185 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
186 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
187 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
x = self.cv1(x)
|
191 |
+
with warnings.catch_warnings():
|
192 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
193 |
+
y1 = self.m(x)
|
194 |
+
y2 = self.m(y1)
|
195 |
+
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|
196 |
+
|
197 |
+
|
198 |
+
class Focus(nn.Module):
|
199 |
+
# Focus wh information into c-space
|
200 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
201 |
+
super().__init__()
|
202 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
203 |
+
# self.contract = Contract(gain=2)
|
204 |
+
|
205 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
206 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
207 |
+
# return self.conv(self.contract(x))
|
208 |
+
|
209 |
+
|
210 |
+
class GhostConv(nn.Module):
|
211 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
212 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
213 |
+
super().__init__()
|
214 |
+
c_ = c2 // 2 # hidden channels
|
215 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
216 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
217 |
+
|
218 |
+
def forward(self, x):
|
219 |
+
y = self.cv1(x)
|
220 |
+
return torch.cat([y, self.cv2(y)], 1)
|
221 |
+
|
222 |
+
|
223 |
+
class GhostBottleneck(nn.Module):
|
224 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
225 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
226 |
+
super().__init__()
|
227 |
+
c_ = c2 // 2
|
228 |
+
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
229 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
230 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
231 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
232 |
+
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
233 |
+
|
234 |
+
def forward(self, x):
|
235 |
+
return self.conv(x) + self.shortcut(x)
|
236 |
+
|
237 |
+
|
238 |
+
class Contract(nn.Module):
|
239 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
240 |
+
def __init__(self, gain=2):
|
241 |
+
super().__init__()
|
242 |
+
self.gain = gain
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
246 |
+
s = self.gain
|
247 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
248 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
249 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
250 |
+
|
251 |
+
|
252 |
+
class Expand(nn.Module):
|
253 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
254 |
+
def __init__(self, gain=2):
|
255 |
+
super().__init__()
|
256 |
+
self.gain = gain
|
257 |
+
|
258 |
+
def forward(self, x):
|
259 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
260 |
+
s = self.gain
|
261 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
262 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
263 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
264 |
+
|
265 |
+
|
266 |
+
class Concat(nn.Module):
|
267 |
+
# Concatenate a list of tensors along dimension
|
268 |
+
def __init__(self, dimension=1):
|
269 |
+
super().__init__()
|
270 |
+
self.d = dimension
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
return torch.cat(x, self.d)
|
274 |
+
|
275 |
+
|
276 |
+
class AutoShape(nn.Module):
|
277 |
+
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
278 |
+
conf = 0.25 # NMS confidence threshold
|
279 |
+
iou = 0.45 # NMS IoU threshold
|
280 |
+
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
281 |
+
multi_label = False # NMS multiple labels per box
|
282 |
+
max_det = 1000 # maximum number of detections per image
|
283 |
+
|
284 |
+
def __init__(self, model):
|
285 |
+
super().__init__()
|
286 |
+
self.model = model.eval()
|
287 |
+
|
288 |
+
def autoshape(self):
|
289 |
+
LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
290 |
+
return self
|
291 |
+
|
292 |
+
def _apply(self, fn):
|
293 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
294 |
+
self = super()._apply(fn)
|
295 |
+
m = self.model.model[-1] # Detect()
|
296 |
+
m.stride = fn(m.stride)
|
297 |
+
m.grid = list(map(fn, m.grid))
|
298 |
+
if isinstance(m.anchor_grid, list):
|
299 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
300 |
+
return self
|
301 |
+
|
302 |
+
@torch.no_grad()
|
303 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
304 |
+
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
305 |
+
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
306 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
307 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
308 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
309 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
310 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
311 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
312 |
+
|
313 |
+
t = [time_sync()]
|
314 |
+
p = next(self.model.parameters()) # for device and type
|
315 |
+
if isinstance(imgs, torch.Tensor): # torch
|
316 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
317 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
318 |
+
|
319 |
+
# Pre-process
|
320 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
321 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
322 |
+
for i, im in enumerate(imgs):
|
323 |
+
f = f'image{i}' # filename
|
324 |
+
if isinstance(im, (str, Path)): # filename or uri
|
325 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
326 |
+
im = np.asarray(exif_transpose(im))
|
327 |
+
elif isinstance(im, Image.Image): # PIL Image
|
328 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
329 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
330 |
+
if im.shape[0] < 5: # image in CHW
|
331 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
332 |
+
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
333 |
+
s = im.shape[:2] # HWC
|
334 |
+
shape0.append(s) # image shape
|
335 |
+
g = (size / max(s)) # gain
|
336 |
+
shape1.append([y * g for y in s])
|
337 |
+
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
338 |
+
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
339 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
340 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
341 |
+
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
342 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
343 |
+
t.append(time_sync())
|
344 |
+
|
345 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
346 |
+
# Inference
|
347 |
+
y = self.model(x, augment, profile)[0] # forward
|
348 |
+
t.append(time_sync())
|
349 |
+
|
350 |
+
# Post-process
|
351 |
+
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes,
|
352 |
+
multi_label=self.multi_label, max_det=self.max_det) # NMS
|
353 |
+
for i in range(n):
|
354 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
355 |
+
|
356 |
+
t.append(time_sync())
|
357 |
+
return Detections(imgs, y, files, t, self.names, x.shape)
|
358 |
+
|
359 |
+
|
360 |
+
class Detections:
|
361 |
+
# YOLOv5 detections class for inference results
|
362 |
+
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
363 |
+
super().__init__()
|
364 |
+
d = pred[0].device # device
|
365 |
+
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1., 1.], device=d) for im in imgs] # normalizations
|
366 |
+
self.imgs = imgs # list of images as numpy arrays
|
367 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
368 |
+
self.names = names # class names
|
369 |
+
self.files = files # image filenames
|
370 |
+
self.xyxy = pred # xyxy pixels
|
371 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
372 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
373 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
374 |
+
self.n = len(self.pred) # number of images (batch size)
|
375 |
+
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
376 |
+
self.s = shape # inference BCHW shape
|
377 |
+
|
378 |
+
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
|
379 |
+
crops = []
|
380 |
+
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
381 |
+
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
382 |
+
if pred.shape[0]:
|
383 |
+
for c in pred[:, -1].unique():
|
384 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
385 |
+
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
386 |
+
if show or save or render or crop:
|
387 |
+
annotator = Annotator(im, example=str(self.names))
|
388 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
389 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
390 |
+
if crop:
|
391 |
+
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
392 |
+
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
|
393 |
+
'im': save_one_box(box, im, file=file, save=save)})
|
394 |
+
else: # all others
|
395 |
+
annotator.box_label(box, label, color=colors(cls))
|
396 |
+
im = annotator.im
|
397 |
+
else:
|
398 |
+
s += '(no detections)'
|
399 |
+
|
400 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
401 |
+
if pprint:
|
402 |
+
LOGGER.info(s.rstrip(', '))
|
403 |
+
if show:
|
404 |
+
im.show(self.files[i]) # show
|
405 |
+
if save:
|
406 |
+
f = self.files[i]
|
407 |
+
im.save(save_dir / f) # save
|
408 |
+
if i == self.n - 1:
|
409 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
410 |
+
if render:
|
411 |
+
self.imgs[i] = np.asarray(im)
|
412 |
+
if crop:
|
413 |
+
if save:
|
414 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
415 |
+
return crops
|
416 |
+
|
417 |
+
def print(self):
|
418 |
+
self.display(pprint=True) # print results
|
419 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
420 |
+
self.t)
|
421 |
+
|
422 |
+
def show(self):
|
423 |
+
self.display(show=True) # show results
|
424 |
+
|
425 |
+
def save(self, save_dir='runs/detect/exp'):
|
426 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
427 |
+
self.display(save=True, save_dir=save_dir) # save results
|
428 |
+
|
429 |
+
def crop(self, save=True, save_dir='runs/detect/exp'):
|
430 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
431 |
+
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
432 |
+
|
433 |
+
def render(self):
|
434 |
+
self.display(render=True) # render results
|
435 |
+
return self.imgs
|
436 |
+
|
437 |
+
def pandas(self):
|
438 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
439 |
+
new = copy(self) # return copy
|
440 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
441 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
442 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
443 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
444 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
445 |
+
return new
|
446 |
+
|
447 |
+
def tolist(self):
|
448 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
449 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
|
450 |
+
for d in x:
|
451 |
+
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
452 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
453 |
+
return x
|
454 |
+
|
455 |
+
def __len__(self):
|
456 |
+
return self.n
|
457 |
+
|
458 |
+
|
459 |
+
class Classify(nn.Module):
|
460 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
461 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
462 |
+
super().__init__()
|
463 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
464 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
465 |
+
self.flat = nn.Flatten()
|
466 |
+
|
467 |
+
def forward(self, x):
|
468 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
469 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
face_detector/models/experimental.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Experimental modules
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from models.common import Conv
|
11 |
+
from utils.downloads import attempt_download
|
12 |
+
|
13 |
+
|
14 |
+
class CrossConv(nn.Module):
|
15 |
+
# Cross Convolution Downsample
|
16 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
17 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
18 |
+
super().__init__()
|
19 |
+
c_ = int(c2 * e) # hidden channels
|
20 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
21 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
22 |
+
self.add = shortcut and c1 == c2
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
26 |
+
|
27 |
+
|
28 |
+
class Sum(nn.Module):
|
29 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
30 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
31 |
+
super().__init__()
|
32 |
+
self.weight = weight # apply weights boolean
|
33 |
+
self.iter = range(n - 1) # iter object
|
34 |
+
if weight:
|
35 |
+
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
y = x[0] # no weight
|
39 |
+
if self.weight:
|
40 |
+
w = torch.sigmoid(self.w) * 2
|
41 |
+
for i in self.iter:
|
42 |
+
y = y + x[i + 1] * w[i]
|
43 |
+
else:
|
44 |
+
for i in self.iter:
|
45 |
+
y = y + x[i + 1]
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MixConv2d(nn.Module):
|
50 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
51 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
52 |
+
super().__init__()
|
53 |
+
n = len(k) # number of convolutions
|
54 |
+
if equal_ch: # equal c_ per group
|
55 |
+
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
56 |
+
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
57 |
+
else: # equal weight.numel() per group
|
58 |
+
b = [c2] + [0] * n
|
59 |
+
a = np.eye(n + 1, n, k=-1)
|
60 |
+
a -= np.roll(a, 1, axis=1)
|
61 |
+
a *= np.array(k) ** 2
|
62 |
+
a[0] = 1
|
63 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
64 |
+
|
65 |
+
self.m = nn.ModuleList(
|
66 |
+
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
67 |
+
self.bn = nn.BatchNorm2d(c2)
|
68 |
+
self.act = nn.SiLU()
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
72 |
+
|
73 |
+
|
74 |
+
class Ensemble(nn.ModuleList):
|
75 |
+
# Ensemble of models
|
76 |
+
def __init__(self):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
80 |
+
y = []
|
81 |
+
for module in self:
|
82 |
+
y.append(module(x, augment, profile, visualize)[0])
|
83 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
84 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
85 |
+
y = torch.cat(y, 1) # nms ensemble
|
86 |
+
return y, None # inference, train output
|
87 |
+
|
88 |
+
|
89 |
+
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
|
90 |
+
from models.yolo import Detect, Model
|
91 |
+
|
92 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
93 |
+
model = Ensemble()
|
94 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
95 |
+
ckpt = torch.load(attempt_download(w), map_location=map_location) # load
|
96 |
+
if fuse:
|
97 |
+
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
|
98 |
+
else:
|
99 |
+
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
|
100 |
+
|
101 |
+
# Compatibility updates
|
102 |
+
for m in model.modules():
|
103 |
+
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
|
104 |
+
m.inplace = inplace # pytorch 1.7.0 compatibility
|
105 |
+
if type(m) is Detect:
|
106 |
+
if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
|
107 |
+
delattr(m, 'anchor_grid')
|
108 |
+
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
109 |
+
elif type(m) is Conv:
|
110 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
111 |
+
|
112 |
+
if len(model) == 1:
|
113 |
+
return model[-1] # return model
|
114 |
+
else:
|
115 |
+
print(f'Ensemble created with {weights}\n')
|
116 |
+
for k in ['names']:
|
117 |
+
setattr(model, k, getattr(model[-1], k))
|
118 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
119 |
+
return model # return ensemble
|
face_detector/models/hub/anchors.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Default anchors for COCO data
|
3 |
+
|
4 |
+
|
5 |
+
# P5 -------------------------------------------------------------------------------------------------------------------
|
6 |
+
# P5-640:
|
7 |
+
anchors_p5_640:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
|
13 |
+
# P6 -------------------------------------------------------------------------------------------------------------------
|
14 |
+
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
15 |
+
anchors_p6_640:
|
16 |
+
- [9,11, 21,19, 17,41] # P3/8
|
17 |
+
- [43,32, 39,70, 86,64] # P4/16
|
18 |
+
- [65,131, 134,130, 120,265] # P5/32
|
19 |
+
- [282,180, 247,354, 512,387] # P6/64
|
20 |
+
|
21 |
+
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
22 |
+
anchors_p6_1280:
|
23 |
+
- [19,27, 44,40, 38,94] # P3/8
|
24 |
+
- [96,68, 86,152, 180,137] # P4/16
|
25 |
+
- [140,301, 303,264, 238,542] # P5/32
|
26 |
+
- [436,615, 739,380, 925,792] # P6/64
|
27 |
+
|
28 |
+
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
29 |
+
anchors_p6_1920:
|
30 |
+
- [28,41, 67,59, 57,141] # P3/8
|
31 |
+
- [144,103, 129,227, 270,205] # P4/16
|
32 |
+
- [209,452, 455,396, 358,812] # P5/32
|
33 |
+
- [653,922, 1109,570, 1387,1187] # P6/64
|
34 |
+
|
35 |
+
|
36 |
+
# P7 -------------------------------------------------------------------------------------------------------------------
|
37 |
+
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
38 |
+
anchors_p7_640:
|
39 |
+
- [11,11, 13,30, 29,20] # P3/8
|
40 |
+
- [30,46, 61,38, 39,92] # P4/16
|
41 |
+
- [78,80, 146,66, 79,163] # P5/32
|
42 |
+
- [149,150, 321,143, 157,303] # P6/64
|
43 |
+
- [257,402, 359,290, 524,372] # P7/128
|
44 |
+
|
45 |
+
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
46 |
+
anchors_p7_1280:
|
47 |
+
- [19,22, 54,36, 32,77] # P3/8
|
48 |
+
- [70,83, 138,71, 75,173] # P4/16
|
49 |
+
- [165,159, 148,334, 375,151] # P5/32
|
50 |
+
- [334,317, 251,626, 499,474] # P6/64
|
51 |
+
- [750,326, 534,814, 1079,818] # P7/128
|
52 |
+
|
53 |
+
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
54 |
+
anchors_p7_1920:
|
55 |
+
- [29,34, 81,55, 47,115] # P3/8
|
56 |
+
- [105,124, 207,107, 113,259] # P4/16
|
57 |
+
- [247,238, 222,500, 563,227] # P5/32
|
58 |
+
- [501,476, 376,939, 749,711] # P6/64
|
59 |
+
- [1126,489, 801,1222, 1618,1227] # P7/128
|
face_detector/models/hub/yolov3-spp.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3-SPP head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
face_detector/models/hub/yolov3-tiny.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,14, 23,27, 37,58] # P4/16
|
9 |
+
- [81,82, 135,169, 344,319] # P5/32
|
10 |
+
|
11 |
+
# YOLOv3-tiny backbone
|
12 |
+
backbone:
|
13 |
+
# [from, number, module, args]
|
14 |
+
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
16 |
+
[-1, 1, Conv, [32, 3, 1]],
|
17 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
19 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
20 |
+
[-1, 1, Conv, [128, 3, 1]],
|
21 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
22 |
+
[-1, 1, Conv, [256, 3, 1]],
|
23 |
+
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
24 |
+
[-1, 1, Conv, [512, 3, 1]],
|
25 |
+
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
26 |
+
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
27 |
+
]
|
28 |
+
|
29 |
+
# YOLOv3-tiny head
|
30 |
+
head:
|
31 |
+
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
+
[-1, 1, Conv, [256, 1, 1]],
|
33 |
+
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
34 |
+
|
35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
38 |
+
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
39 |
+
|
40 |
+
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
41 |
+
]
|
face_detector/models/hub/yolov3.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, Conv, [512, [1, 1]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
face_detector/models/hub/yolov5-bifpn.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, C3, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 BiFPN head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14, 6], 1, Concat, [1]], # cat P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/hub/yolov5-fpn.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, Bottleneck, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 6, BottleneckCSP, [1024]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 FPN head
|
28 |
+
head:
|
29 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
30 |
+
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
|
35 |
+
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
+
]
|
face_detector/models/hub/yolov5-p2.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 9, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
21 |
+
[-1, 3, C3, [1024, False]], # 9
|
22 |
+
]
|
23 |
+
|
24 |
+
# YOLOv5 head
|
25 |
+
head:
|
26 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
27 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
28 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
29 |
+
[-1, 3, C3, [512, False]], # 13
|
30 |
+
|
31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
34 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
35 |
+
|
36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
39 |
+
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
40 |
+
|
41 |
+
[-1, 1, Conv, [128, 3, 2]],
|
42 |
+
[[-1, 18], 1, Concat, [1]], # cat head P3
|
43 |
+
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
44 |
+
|
45 |
+
[-1, 1, Conv, [256, 3, 2]],
|
46 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
47 |
+
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
48 |
+
|
49 |
+
[-1, 1, Conv, [512, 3, 2]],
|
50 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
51 |
+
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
52 |
+
|
53 |
+
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
54 |
+
]
|
face_detector/models/hub/yolov5-p6.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 9, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 3, C3, [768]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
+
[-1, 1, SPP, [1024, [3, 5, 7]]],
|
23 |
+
[-1, 3, C3, [1024, False]], # 11
|
24 |
+
]
|
25 |
+
|
26 |
+
# YOLOv5 head
|
27 |
+
head:
|
28 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
31 |
+
[-1, 3, C3, [768, False]], # 15
|
32 |
+
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
36 |
+
[-1, 3, C3, [512, False]], # 19
|
37 |
+
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
41 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [256, 3, 2]],
|
44 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
45 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [512, 3, 2]],
|
48 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
49 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [768, 3, 2]],
|
52 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
53 |
+
[-1, 3, C3, [1024, False]], # 32 (P5/64-xlarge)
|
54 |
+
|
55 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
56 |
+
]
|
face_detector/models/hub/yolov5-p7.yaml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors: 3
|
8 |
+
|
9 |
+
# YOLOv5 backbone
|
10 |
+
backbone:
|
11 |
+
# [from, number, module, args]
|
12 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
13 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
+
[-1, 3, C3, [128]],
|
15 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
+
[-1, 9, C3, [256]],
|
17 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
+
[-1, 9, C3, [512]],
|
19 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
+
[-1, 3, C3, [768]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
+
[-1, 3, C3, [1024]],
|
23 |
+
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
24 |
+
[-1, 1, SPP, [1280, [3, 5]]],
|
25 |
+
[-1, 3, C3, [1280, False]], # 13
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv5 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Conv, [1024, 1, 1]],
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
33 |
+
[-1, 3, C3, [1024, False]], # 17
|
34 |
+
|
35 |
+
[-1, 1, Conv, [768, 1, 1]],
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
38 |
+
[-1, 3, C3, [768, False]], # 21
|
39 |
+
|
40 |
+
[-1, 1, Conv, [512, 1, 1]],
|
41 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
42 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
43 |
+
[-1, 3, C3, [512, False]], # 25
|
44 |
+
|
45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
46 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
47 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
48 |
+
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
49 |
+
|
50 |
+
[-1, 1, Conv, [256, 3, 2]],
|
51 |
+
[[-1, 26], 1, Concat, [1]], # cat head P4
|
52 |
+
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
53 |
+
|
54 |
+
[-1, 1, Conv, [512, 3, 2]],
|
55 |
+
[[-1, 22], 1, Concat, [1]], # cat head P5
|
56 |
+
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
57 |
+
|
58 |
+
[-1, 1, Conv, [768, 3, 2]],
|
59 |
+
[[-1, 18], 1, Concat, [1]], # cat head P6
|
60 |
+
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
61 |
+
|
62 |
+
[-1, 1, Conv, [1024, 3, 2]],
|
63 |
+
[[-1, 14], 1, Concat, [1]], # cat head P7
|
64 |
+
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
65 |
+
|
66 |
+
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
67 |
+
]
|
face_detector/models/hub/yolov5-panet.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 PANet head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/hub/yolov5l6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
face_detector/models/hub/yolov5m6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.67 # model depth multiple
|
6 |
+
width_multiple: 0.75 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
face_detector/models/hub/yolov5n6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
face_detector/models/hub/yolov5s-ghost.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3Ghost, [128]],
|
18 |
+
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, C3Ghost, [256]],
|
20 |
+
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3Ghost, [512]],
|
22 |
+
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, C3Ghost, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, GhostConv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3Ghost, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, GhostConv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, GhostConv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, GhostConv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/hub/yolov5s-transformer.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/hub/yolov5s6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
face_detector/models/hub/yolov5x6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.33 # model depth multiple
|
6 |
+
width_multiple: 1.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
face_detector/models/tf.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
TensorFlow, Keras and TFLite versions of YOLOv5
|
4 |
+
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
5 |
+
|
6 |
+
Usage:
|
7 |
+
$ python models/tf.py --weights yolov5s.pt
|
8 |
+
|
9 |
+
Export:
|
10 |
+
$ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
11 |
+
"""
|
12 |
+
|
13 |
+
import argparse
|
14 |
+
import logging
|
15 |
+
import sys
|
16 |
+
from copy import deepcopy
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
FILE = Path(__file__).resolve()
|
20 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
21 |
+
if str(ROOT) not in sys.path:
|
22 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
23 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
from tensorflow import keras
|
30 |
+
|
31 |
+
from models.common import Bottleneck, BottleneckCSP, Concat, Conv, C3, DWConv, Focus, SPP, SPPF, autopad
|
32 |
+
from models.experimental import CrossConv, MixConv2d, attempt_load
|
33 |
+
from models.yolo import Detect
|
34 |
+
from utils.general import make_divisible, print_args, LOGGER
|
35 |
+
from utils.activations import SiLU
|
36 |
+
|
37 |
+
|
38 |
+
class TFBN(keras.layers.Layer):
|
39 |
+
# TensorFlow BatchNormalization wrapper
|
40 |
+
def __init__(self, w=None):
|
41 |
+
super().__init__()
|
42 |
+
self.bn = keras.layers.BatchNormalization(
|
43 |
+
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
44 |
+
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
45 |
+
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
46 |
+
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
47 |
+
epsilon=w.eps)
|
48 |
+
|
49 |
+
def call(self, inputs):
|
50 |
+
return self.bn(inputs)
|
51 |
+
|
52 |
+
|
53 |
+
class TFPad(keras.layers.Layer):
|
54 |
+
def __init__(self, pad):
|
55 |
+
super().__init__()
|
56 |
+
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
57 |
+
|
58 |
+
def call(self, inputs):
|
59 |
+
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
60 |
+
|
61 |
+
|
62 |
+
class TFConv(keras.layers.Layer):
|
63 |
+
# Standard convolution
|
64 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
65 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
66 |
+
super().__init__()
|
67 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
68 |
+
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
69 |
+
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
70 |
+
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
71 |
+
|
72 |
+
conv = keras.layers.Conv2D(
|
73 |
+
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
|
74 |
+
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
75 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
76 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
77 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
78 |
+
|
79 |
+
# YOLOv5 activations
|
80 |
+
if isinstance(w.act, nn.LeakyReLU):
|
81 |
+
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
82 |
+
elif isinstance(w.act, nn.Hardswish):
|
83 |
+
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
84 |
+
elif isinstance(w.act, (nn.SiLU, SiLU)):
|
85 |
+
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
86 |
+
else:
|
87 |
+
raise Exception(f'no matching TensorFlow activation found for {w.act}')
|
88 |
+
|
89 |
+
def call(self, inputs):
|
90 |
+
return self.act(self.bn(self.conv(inputs)))
|
91 |
+
|
92 |
+
|
93 |
+
class TFFocus(keras.layers.Layer):
|
94 |
+
# Focus wh information into c-space
|
95 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
96 |
+
# ch_in, ch_out, kernel, stride, padding, groups
|
97 |
+
super().__init__()
|
98 |
+
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
99 |
+
|
100 |
+
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
101 |
+
# inputs = inputs / 255. # normalize 0-255 to 0-1
|
102 |
+
return self.conv(tf.concat([inputs[:, ::2, ::2, :],
|
103 |
+
inputs[:, 1::2, ::2, :],
|
104 |
+
inputs[:, ::2, 1::2, :],
|
105 |
+
inputs[:, 1::2, 1::2, :]], 3))
|
106 |
+
|
107 |
+
|
108 |
+
class TFBottleneck(keras.layers.Layer):
|
109 |
+
# Standard bottleneck
|
110 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
111 |
+
super().__init__()
|
112 |
+
c_ = int(c2 * e) # hidden channels
|
113 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
114 |
+
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
115 |
+
self.add = shortcut and c1 == c2
|
116 |
+
|
117 |
+
def call(self, inputs):
|
118 |
+
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
119 |
+
|
120 |
+
|
121 |
+
class TFConv2d(keras.layers.Layer):
|
122 |
+
# Substitution for PyTorch nn.Conv2D
|
123 |
+
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
124 |
+
super().__init__()
|
125 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
126 |
+
self.conv = keras.layers.Conv2D(
|
127 |
+
c2, k, s, 'VALID', use_bias=bias,
|
128 |
+
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
|
129 |
+
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
|
130 |
+
|
131 |
+
def call(self, inputs):
|
132 |
+
return self.conv(inputs)
|
133 |
+
|
134 |
+
|
135 |
+
class TFBottleneckCSP(keras.layers.Layer):
|
136 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
137 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
138 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
139 |
+
super().__init__()
|
140 |
+
c_ = int(c2 * e) # hidden channels
|
141 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
142 |
+
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
143 |
+
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
144 |
+
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
145 |
+
self.bn = TFBN(w.bn)
|
146 |
+
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
147 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
148 |
+
|
149 |
+
def call(self, inputs):
|
150 |
+
y1 = self.cv3(self.m(self.cv1(inputs)))
|
151 |
+
y2 = self.cv2(inputs)
|
152 |
+
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
153 |
+
|
154 |
+
|
155 |
+
class TFC3(keras.layers.Layer):
|
156 |
+
# CSP Bottleneck with 3 convolutions
|
157 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
158 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
159 |
+
super().__init__()
|
160 |
+
c_ = int(c2 * e) # hidden channels
|
161 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
162 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
163 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
164 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
165 |
+
|
166 |
+
def call(self, inputs):
|
167 |
+
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
168 |
+
|
169 |
+
|
170 |
+
class TFSPP(keras.layers.Layer):
|
171 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
172 |
+
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
173 |
+
super().__init__()
|
174 |
+
c_ = c1 // 2 # hidden channels
|
175 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
176 |
+
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
177 |
+
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
178 |
+
|
179 |
+
def call(self, inputs):
|
180 |
+
x = self.cv1(inputs)
|
181 |
+
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
182 |
+
|
183 |
+
|
184 |
+
class TFSPPF(keras.layers.Layer):
|
185 |
+
# Spatial pyramid pooling-Fast layer
|
186 |
+
def __init__(self, c1, c2, k=5, w=None):
|
187 |
+
super().__init__()
|
188 |
+
c_ = c1 // 2 # hidden channels
|
189 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
190 |
+
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
191 |
+
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
|
192 |
+
|
193 |
+
def call(self, inputs):
|
194 |
+
x = self.cv1(inputs)
|
195 |
+
y1 = self.m(x)
|
196 |
+
y2 = self.m(y1)
|
197 |
+
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
198 |
+
|
199 |
+
|
200 |
+
class TFDetect(keras.layers.Layer):
|
201 |
+
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
202 |
+
super().__init__()
|
203 |
+
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
204 |
+
self.nc = nc # number of classes
|
205 |
+
self.no = nc + 5 # number of outputs per anchor
|
206 |
+
self.nl = len(anchors) # number of detection layers
|
207 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
208 |
+
self.grid = [tf.zeros(1)] * self.nl # init grid
|
209 |
+
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
210 |
+
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
|
211 |
+
[self.nl, 1, -1, 1, 2])
|
212 |
+
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
213 |
+
self.training = False # set to False after building model
|
214 |
+
self.imgsz = imgsz
|
215 |
+
for i in range(self.nl):
|
216 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
217 |
+
self.grid[i] = self._make_grid(nx, ny)
|
218 |
+
|
219 |
+
def call(self, inputs):
|
220 |
+
z = [] # inference output
|
221 |
+
x = []
|
222 |
+
for i in range(self.nl):
|
223 |
+
x.append(self.m[i](inputs[i]))
|
224 |
+
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
225 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
226 |
+
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
|
227 |
+
|
228 |
+
if not self.training: # inference
|
229 |
+
y = tf.sigmoid(x[i])
|
230 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
231 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
232 |
+
# Normalize xywh to 0-1 to reduce calibration error
|
233 |
+
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
234 |
+
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
235 |
+
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
236 |
+
z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
|
237 |
+
|
238 |
+
return x if self.training else (tf.concat(z, 1), x)
|
239 |
+
|
240 |
+
@staticmethod
|
241 |
+
def _make_grid(nx=20, ny=20):
|
242 |
+
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
243 |
+
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
244 |
+
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
245 |
+
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
246 |
+
|
247 |
+
|
248 |
+
class TFUpsample(keras.layers.Layer):
|
249 |
+
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
250 |
+
super().__init__()
|
251 |
+
assert scale_factor == 2, "scale_factor must be 2"
|
252 |
+
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
253 |
+
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
254 |
+
# with default arguments: align_corners=False, half_pixel_centers=False
|
255 |
+
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
256 |
+
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
257 |
+
|
258 |
+
def call(self, inputs):
|
259 |
+
return self.upsample(inputs)
|
260 |
+
|
261 |
+
|
262 |
+
class TFConcat(keras.layers.Layer):
|
263 |
+
def __init__(self, dimension=1, w=None):
|
264 |
+
super().__init__()
|
265 |
+
assert dimension == 1, "convert only NCHW to NHWC concat"
|
266 |
+
self.d = 3
|
267 |
+
|
268 |
+
def call(self, inputs):
|
269 |
+
return tf.concat(inputs, self.d)
|
270 |
+
|
271 |
+
|
272 |
+
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
273 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
274 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
275 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
276 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
277 |
+
|
278 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
279 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
280 |
+
m_str = m
|
281 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
282 |
+
for j, a in enumerate(args):
|
283 |
+
try:
|
284 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
285 |
+
except NameError:
|
286 |
+
pass
|
287 |
+
|
288 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
289 |
+
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
|
290 |
+
c1, c2 = ch[f], args[0]
|
291 |
+
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
292 |
+
|
293 |
+
args = [c1, c2, *args[1:]]
|
294 |
+
if m in [BottleneckCSP, C3]:
|
295 |
+
args.insert(2, n)
|
296 |
+
n = 1
|
297 |
+
elif m is nn.BatchNorm2d:
|
298 |
+
args = [ch[f]]
|
299 |
+
elif m is Concat:
|
300 |
+
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
301 |
+
elif m is Detect:
|
302 |
+
args.append([ch[x + 1] for x in f])
|
303 |
+
if isinstance(args[1], int): # number of anchors
|
304 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
305 |
+
args.append(imgsz)
|
306 |
+
else:
|
307 |
+
c2 = ch[f]
|
308 |
+
|
309 |
+
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
310 |
+
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
311 |
+
else tf_m(*args, w=model.model[i]) # module
|
312 |
+
|
313 |
+
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
314 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
315 |
+
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
316 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
317 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
|
318 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
319 |
+
layers.append(m_)
|
320 |
+
ch.append(c2)
|
321 |
+
return keras.Sequential(layers), sorted(save)
|
322 |
+
|
323 |
+
|
324 |
+
class TFModel:
|
325 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
326 |
+
super().__init__()
|
327 |
+
if isinstance(cfg, dict):
|
328 |
+
self.yaml = cfg # model dict
|
329 |
+
else: # is *.yaml
|
330 |
+
import yaml # for torch hub
|
331 |
+
self.yaml_file = Path(cfg).name
|
332 |
+
with open(cfg) as f:
|
333 |
+
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
334 |
+
|
335 |
+
# Define model
|
336 |
+
if nc and nc != self.yaml['nc']:
|
337 |
+
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
338 |
+
self.yaml['nc'] = nc # override yaml value
|
339 |
+
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
340 |
+
|
341 |
+
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
342 |
+
conf_thres=0.25):
|
343 |
+
y = [] # outputs
|
344 |
+
x = inputs
|
345 |
+
for i, m in enumerate(self.model.layers):
|
346 |
+
if m.f != -1: # if not from previous layer
|
347 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
348 |
+
|
349 |
+
x = m(x) # run
|
350 |
+
y.append(x if m.i in self.savelist else None) # save output
|
351 |
+
|
352 |
+
# Add TensorFlow NMS
|
353 |
+
if tf_nms:
|
354 |
+
boxes = self._xywh2xyxy(x[0][..., :4])
|
355 |
+
probs = x[0][:, :, 4:5]
|
356 |
+
classes = x[0][:, :, 5:]
|
357 |
+
scores = probs * classes
|
358 |
+
if agnostic_nms:
|
359 |
+
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
360 |
+
return nms, x[1]
|
361 |
+
else:
|
362 |
+
boxes = tf.expand_dims(boxes, 2)
|
363 |
+
nms = tf.image.combined_non_max_suppression(
|
364 |
+
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
|
365 |
+
return nms, x[1]
|
366 |
+
|
367 |
+
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
368 |
+
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
|
369 |
+
# xywh = x[..., :4] # x(6300,4) boxes
|
370 |
+
# conf = x[..., 4:5] # x(6300,1) confidences
|
371 |
+
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
372 |
+
# return tf.concat([conf, cls, xywh], 1)
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def _xywh2xyxy(xywh):
|
376 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
377 |
+
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
378 |
+
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
379 |
+
|
380 |
+
|
381 |
+
class AgnosticNMS(keras.layers.Layer):
|
382 |
+
# TF Agnostic NMS
|
383 |
+
def call(self, input, topk_all, iou_thres, conf_thres):
|
384 |
+
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
385 |
+
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
|
386 |
+
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
387 |
+
name='agnostic_nms')
|
388 |
+
|
389 |
+
@staticmethod
|
390 |
+
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
391 |
+
boxes, classes, scores = x
|
392 |
+
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
393 |
+
scores_inp = tf.reduce_max(scores, -1)
|
394 |
+
selected_inds = tf.image.non_max_suppression(
|
395 |
+
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
|
396 |
+
selected_boxes = tf.gather(boxes, selected_inds)
|
397 |
+
padded_boxes = tf.pad(selected_boxes,
|
398 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
399 |
+
mode="CONSTANT", constant_values=0.0)
|
400 |
+
selected_scores = tf.gather(scores_inp, selected_inds)
|
401 |
+
padded_scores = tf.pad(selected_scores,
|
402 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
403 |
+
mode="CONSTANT", constant_values=-1.0)
|
404 |
+
selected_classes = tf.gather(class_inds, selected_inds)
|
405 |
+
padded_classes = tf.pad(selected_classes,
|
406 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
407 |
+
mode="CONSTANT", constant_values=-1.0)
|
408 |
+
valid_detections = tf.shape(selected_inds)[0]
|
409 |
+
return padded_boxes, padded_scores, padded_classes, valid_detections
|
410 |
+
|
411 |
+
|
412 |
+
def representative_dataset_gen(dataset, ncalib=100):
|
413 |
+
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
414 |
+
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
415 |
+
input = np.transpose(img, [1, 2, 0])
|
416 |
+
input = np.expand_dims(input, axis=0).astype(np.float32)
|
417 |
+
input /= 255.0
|
418 |
+
yield [input]
|
419 |
+
if n >= ncalib:
|
420 |
+
break
|
421 |
+
|
422 |
+
|
423 |
+
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
424 |
+
imgsz=(640, 640), # inference size h,w
|
425 |
+
batch_size=1, # batch size
|
426 |
+
dynamic=False, # dynamic batch size
|
427 |
+
):
|
428 |
+
# PyTorch model
|
429 |
+
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
430 |
+
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
431 |
+
y = model(im) # inference
|
432 |
+
model.info()
|
433 |
+
|
434 |
+
# TensorFlow model
|
435 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
436 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
437 |
+
y = tf_model.predict(im) # inference
|
438 |
+
|
439 |
+
# Keras model
|
440 |
+
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
441 |
+
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
442 |
+
keras_model.summary()
|
443 |
+
|
444 |
+
|
445 |
+
def parse_opt():
|
446 |
+
parser = argparse.ArgumentParser()
|
447 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
448 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
449 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
450 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
451 |
+
opt = parser.parse_args()
|
452 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
453 |
+
print_args(FILE.stem, opt)
|
454 |
+
return opt
|
455 |
+
|
456 |
+
|
457 |
+
def main(opt):
|
458 |
+
run(**vars(opt))
|
459 |
+
|
460 |
+
|
461 |
+
if __name__ == "__main__":
|
462 |
+
opt = parse_opt()
|
463 |
+
main(opt)
|
face_detector/models/yolo.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
YOLO-specific modules
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ python path/to/models/yolo.py --cfg yolov5s.yaml
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import sys
|
11 |
+
from copy import deepcopy
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
FILE = Path(__file__).resolve()
|
15 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
16 |
+
if str(ROOT) not in sys.path:
|
17 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
18 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
19 |
+
|
20 |
+
from models.common import *
|
21 |
+
from models.experimental import *
|
22 |
+
from utils.autoanchor import check_anchor_order
|
23 |
+
from utils.general import check_version, check_yaml, make_divisible, print_args, LOGGER
|
24 |
+
from utils.plots import feature_visualization
|
25 |
+
from utils.torch_utils import copy_attr, fuse_conv_and_bn, initialize_weights, model_info, scale_img, \
|
26 |
+
select_device, time_sync
|
27 |
+
|
28 |
+
try:
|
29 |
+
import thop # for FLOPs computation
|
30 |
+
except ImportError:
|
31 |
+
thop = None
|
32 |
+
|
33 |
+
|
34 |
+
class Detect(nn.Module):
|
35 |
+
stride = None # strides computed during build
|
36 |
+
onnx_dynamic = False # ONNX export parameter
|
37 |
+
|
38 |
+
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
39 |
+
super().__init__()
|
40 |
+
self.nc = nc # number of classes
|
41 |
+
self.no = nc + 5 # number of outputs per anchor
|
42 |
+
self.nl = len(anchors) # number of detection layers
|
43 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
44 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
45 |
+
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
|
46 |
+
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
47 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
48 |
+
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
z = [] # inference output
|
52 |
+
for i in range(self.nl):
|
53 |
+
x[i] = self.m[i](x[i]) # conv
|
54 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
55 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
56 |
+
|
57 |
+
if not self.training: # inference
|
58 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
|
59 |
+
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
60 |
+
|
61 |
+
y = x[i].sigmoid()
|
62 |
+
if self.inplace:
|
63 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
64 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
65 |
+
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
66 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
67 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
68 |
+
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
69 |
+
z.append(y.view(bs, -1, self.no))
|
70 |
+
|
71 |
+
return x if self.training else (torch.cat(z, 1), x)
|
72 |
+
|
73 |
+
def _make_grid(self, nx=20, ny=20, i=0):
|
74 |
+
d = self.anchors[i].device
|
75 |
+
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
76 |
+
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
|
77 |
+
else:
|
78 |
+
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
|
79 |
+
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
|
80 |
+
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
|
81 |
+
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
|
82 |
+
return grid, anchor_grid
|
83 |
+
|
84 |
+
|
85 |
+
class Model(nn.Module):
|
86 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
87 |
+
super().__init__()
|
88 |
+
if isinstance(cfg, dict):
|
89 |
+
self.yaml = cfg # model dict
|
90 |
+
else: # is *.yaml
|
91 |
+
import yaml # for torch hub
|
92 |
+
self.yaml_file = Path(cfg).name
|
93 |
+
with open(cfg, errors='ignore') as f:
|
94 |
+
self.yaml = yaml.safe_load(f) # model dict
|
95 |
+
|
96 |
+
# Define model
|
97 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
98 |
+
if nc and nc != self.yaml['nc']:
|
99 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
100 |
+
self.yaml['nc'] = nc # override yaml value
|
101 |
+
if anchors:
|
102 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
103 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
104 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
105 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
106 |
+
self.inplace = self.yaml.get('inplace', True)
|
107 |
+
|
108 |
+
# Build strides, anchors
|
109 |
+
m = self.model[-1] # Detect()
|
110 |
+
if isinstance(m, Detect):
|
111 |
+
s = 256 # 2x min stride
|
112 |
+
m.inplace = self.inplace
|
113 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
114 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
115 |
+
check_anchor_order(m)
|
116 |
+
self.stride = m.stride
|
117 |
+
self._initialize_biases() # only run once
|
118 |
+
|
119 |
+
# Init weights, biases
|
120 |
+
initialize_weights(self)
|
121 |
+
self.info()
|
122 |
+
LOGGER.info('')
|
123 |
+
|
124 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
125 |
+
if augment:
|
126 |
+
return self._forward_augment(x) # augmented inference, None
|
127 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
128 |
+
|
129 |
+
def _forward_augment(self, x):
|
130 |
+
img_size = x.shape[-2:] # height, width
|
131 |
+
s = [1, 0.83, 0.67] # scales
|
132 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
133 |
+
y = [] # outputs
|
134 |
+
for si, fi in zip(s, f):
|
135 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
136 |
+
yi = self._forward_once(xi)[0] # forward
|
137 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
138 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
139 |
+
y.append(yi)
|
140 |
+
y = self._clip_augmented(y) # clip augmented tails
|
141 |
+
return torch.cat(y, 1), None # augmented inference, train
|
142 |
+
|
143 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
144 |
+
y, dt = [], [] # outputs
|
145 |
+
for m in self.model:
|
146 |
+
if m.f != -1: # if not from previous layer
|
147 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
148 |
+
if profile:
|
149 |
+
self._profile_one_layer(m, x, dt)
|
150 |
+
x = m(x) # run
|
151 |
+
y.append(x if m.i in self.save else None) # save output
|
152 |
+
if visualize:
|
153 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
154 |
+
return x
|
155 |
+
|
156 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
157 |
+
# de-scale predictions following augmented inference (inverse operation)
|
158 |
+
if self.inplace:
|
159 |
+
p[..., :4] /= scale # de-scale
|
160 |
+
if flips == 2:
|
161 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
162 |
+
elif flips == 3:
|
163 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
164 |
+
else:
|
165 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
166 |
+
if flips == 2:
|
167 |
+
y = img_size[0] - y # de-flip ud
|
168 |
+
elif flips == 3:
|
169 |
+
x = img_size[1] - x # de-flip lr
|
170 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
171 |
+
return p
|
172 |
+
|
173 |
+
def _clip_augmented(self, y):
|
174 |
+
# Clip YOLOv5 augmented inference tails
|
175 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
176 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
177 |
+
e = 1 # exclude layer count
|
178 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
179 |
+
y[0] = y[0][:, :-i] # large
|
180 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
181 |
+
y[-1] = y[-1][:, i:] # small
|
182 |
+
return y
|
183 |
+
|
184 |
+
def _profile_one_layer(self, m, x, dt):
|
185 |
+
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
|
186 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
187 |
+
t = time_sync()
|
188 |
+
for _ in range(10):
|
189 |
+
m(x.copy() if c else x)
|
190 |
+
dt.append((time_sync() - t) * 100)
|
191 |
+
if m == self.model[0]:
|
192 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
|
193 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
194 |
+
if c:
|
195 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
196 |
+
|
197 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
198 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
199 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
200 |
+
m = self.model[-1] # Detect() module
|
201 |
+
for mi, s in zip(m.m, m.stride): # from
|
202 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
203 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
204 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
205 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
206 |
+
|
207 |
+
def _print_biases(self):
|
208 |
+
m = self.model[-1] # Detect() module
|
209 |
+
for mi in m.m: # from
|
210 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
211 |
+
LOGGER.info(
|
212 |
+
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
213 |
+
|
214 |
+
# def _print_weights(self):
|
215 |
+
# for m in self.model.modules():
|
216 |
+
# if type(m) is Bottleneck:
|
217 |
+
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
218 |
+
|
219 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
220 |
+
LOGGER.info('Fusing layers... ')
|
221 |
+
for m in self.model.modules():
|
222 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
223 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
224 |
+
delattr(m, 'bn') # remove batchnorm
|
225 |
+
m.forward = m.forward_fuse # update forward
|
226 |
+
self.info()
|
227 |
+
return self
|
228 |
+
|
229 |
+
def autoshape(self): # add AutoShape module
|
230 |
+
LOGGER.info('Adding AutoShape... ')
|
231 |
+
m = AutoShape(self) # wrap model
|
232 |
+
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
233 |
+
return m
|
234 |
+
|
235 |
+
def info(self, verbose=False, img_size=640): # print model information
|
236 |
+
model_info(self, verbose, img_size)
|
237 |
+
|
238 |
+
def _apply(self, fn):
|
239 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
240 |
+
self = super()._apply(fn)
|
241 |
+
m = self.model[-1] # Detect()
|
242 |
+
if isinstance(m, Detect):
|
243 |
+
m.stride = fn(m.stride)
|
244 |
+
m.grid = list(map(fn, m.grid))
|
245 |
+
if isinstance(m.anchor_grid, list):
|
246 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
247 |
+
return self
|
248 |
+
|
249 |
+
|
250 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
251 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
252 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
253 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
254 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
255 |
+
|
256 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
257 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
258 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
259 |
+
for j, a in enumerate(args):
|
260 |
+
try:
|
261 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
262 |
+
except NameError:
|
263 |
+
pass
|
264 |
+
|
265 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
266 |
+
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
267 |
+
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
|
268 |
+
c1, c2 = ch[f], args[0]
|
269 |
+
if c2 != no: # if not output
|
270 |
+
c2 = make_divisible(c2 * gw, 8)
|
271 |
+
|
272 |
+
args = [c1, c2, *args[1:]]
|
273 |
+
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
|
274 |
+
args.insert(2, n) # number of repeats
|
275 |
+
n = 1
|
276 |
+
elif m is nn.BatchNorm2d:
|
277 |
+
args = [ch[f]]
|
278 |
+
elif m is Concat:
|
279 |
+
c2 = sum(ch[x] for x in f)
|
280 |
+
elif m is Detect:
|
281 |
+
args.append([ch[x] for x in f])
|
282 |
+
if isinstance(args[1], int): # number of anchors
|
283 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
284 |
+
elif m is Contract:
|
285 |
+
c2 = ch[f] * args[0] ** 2
|
286 |
+
elif m is Expand:
|
287 |
+
c2 = ch[f] // args[0] ** 2
|
288 |
+
else:
|
289 |
+
c2 = ch[f]
|
290 |
+
|
291 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
292 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
293 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
294 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
295 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
296 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
297 |
+
layers.append(m_)
|
298 |
+
if i == 0:
|
299 |
+
ch = []
|
300 |
+
ch.append(c2)
|
301 |
+
return nn.Sequential(*layers), sorted(save)
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == '__main__':
|
305 |
+
parser = argparse.ArgumentParser()
|
306 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
307 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
308 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
309 |
+
opt = parser.parse_args()
|
310 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
311 |
+
print_args(FILE.stem, opt)
|
312 |
+
device = select_device(opt.device)
|
313 |
+
|
314 |
+
# Create model
|
315 |
+
model = Model(opt.cfg).to(device)
|
316 |
+
model.train()
|
317 |
+
|
318 |
+
# Profile
|
319 |
+
if opt.profile:
|
320 |
+
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
321 |
+
y = model(img, profile=True)
|
322 |
+
|
323 |
+
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
324 |
+
# from torch.utils.tensorboard import SummaryWriter
|
325 |
+
# tb_writer = SummaryWriter('.')
|
326 |
+
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
|
327 |
+
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
face_detector/models/yolov5l.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/yolov5m.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.67 # model depth multiple
|
6 |
+
width_multiple: 0.75 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/yolov5n.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
face_detector/models/yolov5s.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 1 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|