import gradio as gr from PIL import Image,ImageDraw, ImageFont import sys import os import torch from util import Detection face_model = os.environ.get('FACE_MODEL') age_model = os.environ.get('AGE_MODEL') torch.hub.download_url_to_file(face_model, 'face_model.pt') torch.hub.download_url_to_file(age_model, 'age_model.pt') sys.path.append("./") sys.path.append("./yolov5") age_model_ts = torch.jit.load("age_model.pt") from yolov5.detect import predict, load_yolo_model # Model model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320]) def run_yolo(img): #img0 = Image.open(img.name).convert("RGB") img_path = img.name # ["name"] img0 = Image.open(img_path).convert("RGB") draw = ImageDraw.Draw(img0) predictions = predict(age_model_ts, model, stride, names, pt, jit, onnx, engine, imgsz=[320, 320], conf_thres=0.5, iou_thres=0.45, save_conf=True, exist_ok=True, nosave=True, save_txt=False, source=img_path, project=None, name=None) detections : list[Detection] = [] for k, (bboxes, img) in enumerate(predictions): #print(bboxes) # exp.imgs.append(img_info) for i, bbox in enumerate(bboxes): det = Detection( (k+1)*(i+1), bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"], bbox["conf"], bbox["class"], bbox["class"], img0.size ) same = list(filter(lambda x: x.xmin == det.xmin and x.ymin == det.ymin or ( det.xmin > x.xmin and det.ymin > x.ymin and det.xmax < x.xmax and det.ymax < x.ymax ) or ( det.xmin < x.xmin and det.ymin < x.ymin and det.xmax > x.xmax and det.ymax > x.ymax ) or Detection.get_iou(det, x) > 0.6, detections)) if len(same) == 0: detections.append(det) draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255)) draw.rectangle(((det.xmin, det.ymin - 10), (det.xmax, det.ymin)), fill=(255,255,255)) draw.text((det.xmin, det.ymin - 10), det.class_name, fill=(0,0,0), font=ImageFont.truetype("Roboto-Regular.ttf")) return img0 inputs = gr.inputs.Image(type='file', label="Input Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "AgeGuesser" description = "Guess the age of a person!" article = """A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time. Links: """ examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ] gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)