import gradio as gr from PIL import Image,ImageDraw, ImageFont, ImageOps import sys import torch from util import Detection, load_font import os if os.environ.get('FACE_MODEL') is not None: face_model = os.environ.get('FACE_MODEL') age_model = os.environ.get('AGE_MODEL') torch.hub.download_url_to_file(face_model, 'face_model.pt') torch.hub.download_url_to_file(age_model, 'age_model.pt') sys.path.append("./") sys.path.append("./yolov5") from yolov5.detect import predict, load_yolo_model # Load Models model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320]) age_model_ts = torch.jit.load("age_model.pt") roboto_font = load_font(height_px=18) def run_yolo(img0): #img_path = img #img0 = Image.open(img_path).convert("RGB") img0 = ImageOps.contain(img0, (720,720)) img0 = ImageOps.exif_transpose(img0) draw = ImageDraw.Draw(img0) predictions = predict(age_model_ts, model, stride, imgsz=[320, 320], conf_thres=0.5, iou_thres=0.45, source=img0 ) detections : list[Detection] = [] for k, bbox in enumerate(predictions): det = Detection( (k+1), bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"], bbox["conf"], bbox["class"], bbox["class"], img0.size ) detections.append(det) draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255)) draw.rectangle(((det.xmin, det.ymin - 20), (det.xmax, det.ymin)), fill=(255,255,255)) draw.text((det.xmin, det.ymin - 20), det.class_name, fill=(0,0,0), font=roboto_font) # img0.save("img.jpg") return img0 #run_yolo("D:\\Download\\IMG_20220803_153335c.jpg") #sys.exit(1) inputs = gr.inputs.Image(type='pil', label="Input Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "AgeGuesser" description = "Guess the age of a person from a facial image!" article = """
A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time.
Links
Credits to my dear colleague Dott. Nicola Marvulli, we've developed AgeGuesser together as part of two university exams. (Computer Vision + Deep Learning)
Credits to my dear professors and the CILAB research group
""" examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ] gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)