import os, sys p = os.path.abspath('..') sys.path.insert(1, p) from data_expectations import create_dataset_file, dataset_validation import glob with open("dataset/yolo/state.txt", "r") as f: uid = f.read() train_imgs = glob.glob("dataset/yolo/train/images/*") valid_imgs = glob.glob("dataset/yolo/valid/images/*") test_imgs = glob.glob("dataset/yolo/test/images/*") splits = [{ "meta": "dataset/images_face_detection_train.csv", "data": "dataset/yolo/train/images/*" }, { "meta": "dataset/images_face_detection_valid.csv", "data": "dataset/yolo/valid/images/*" }, { "meta": "dataset/images_face_detection_test.csv", "data": "dataset/yolo/test/images/*" }, ] partial_success = True for split in splits: imgs = glob.glob(split["data"]) create_dataset_file.create(split["meta"], imgs) results = dataset_validation.test_ge(split["meta"]) print(results) for result in results: print(result["success"]) partial_success = partial_success and result["success"] if not partial_success: break with open("dataset/data_valid_result.txt", "w") as f: f.write(uid.strip() + "-" + str(partial_success) ) assert partial_success """ images_face_detection_train = glob.glob("dataset/yolo/train/images/*") images_face_detection_valid = glob.glob("dataset/yolo/valid/images/*") images_face_detection_test = glob.glob("dataset/yolo/test/images/*") create("images_face_detection_train.csv",images_face_detection_train) create("images_face_detection_valid.csv",images_face_detection_valid) create("images_face_detection_test.csv",images_face_detection_test) test_ge("images_face_detection_train.csv") test_ge("images_face_detection_valid.csv") test_ge("images_face_detection_test.csv") """