fastai-lesson-10-diffusers / image_generator.py
mattb512's picture
add guidance, intermediary latents
b3d2785
raw
history blame
9.31 kB
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import torch
from diffusers import StableDiffusionPipeline
from fastcore.all import concat
from huggingface_hub import notebook_login
from PIL import Image
import numpy as np
# from IPython.display import display
from torchvision import transforms as tfms
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import LMSDiscreteScheduler
from tqdm.auto import tqdm
logging.disable(logging.WARNING)
class ImageGenerator():
def __init__(self):
self.latent_images = []
self.width = 512
self.height = 512
self.generator = torch.manual_seed(32)
self.bs = 1
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.float_size = torch.float16
elif torch.backends.mps.is_available():
self.device = torch.device("mps")
self.float_size = torch.float32
else:
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
self.device = torch.device("cpu")
self.float_size = torch.float32
print(f"pytorch device: {self.device}")
def __repr__(self):
return f"Image Generator with {self.width=} {self.height=}"
def load_models(self):
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.float_size)
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.float_size).to( self.device)
# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema", torch_dtype=torch.float16 ).to(self.device)
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to( self.device)
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet" ).to( self.device) #torch_dtype=torch.float16,
def load_scheduler( self,
beta_start : float=0.00085,
beta_end : float=0.012,
num_train_timesteps :int=1000):
self.scheduler = LMSDiscreteScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
num_train_timesteps=num_train_timesteps)
def load_image(self, filepath:str):
return Image.open(filepath).resize(size=(self.width,self.height))
#.convert("RGB") # RGB = 3 dimensions, RGBA = 4 dimensions
def pil_to_latent(self, image: Image) -> torch.Tensor:
with torch.no_grad():
image = image.resize(size=(self.width,self.height))
np_img = np.transpose( (( np.array(image) / 255)-0.5)*2, (2,0,1)) # turn pil image into np array with values between -1 and 1
# print(f"{np_img.shape=}") # 4, 64, 64
np_images = np.repeat(np_img[np.newaxis, :, :], self.bs, axis=0).astype(np.float32) # adding a new dimension and repeating the image for each prompt, float32 required for mac
# print(f"{np_images.shape=}")
decoded_latent = torch.from_numpy(np_images).to(self.device).float() #<-- stability-ai vae uses half(), compvis vae uses float?
# print(f"{decoded_latent.shape=}")
encoded_latent = 0.18215 * self.vae.encode(decoded_latent).latent_dist.sample()
# print(f"{encoded_latent.shape=}")
return encoded_latent
def add_noise(self, latent: torch.Tensor, scheduler_steps: int = 10) -> torch.FloatTensor:
# noise = torch.randn_like(latent) # missing generator parameter
noise = torch.randn(
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
generator = self.generator).to(self.device)
timesteps = torch.tensor([self.scheduler.timesteps[scheduler_steps]])
noisy_latent = self.scheduler.add_noise(latent, noise, timesteps)
# print(f"add_noise: {timesteps.shape=} {timesteps=} {noisy_latent.shape=}")
return noisy_latent
def latent_to_pil(self, latent:torch.Tensor) -> Image:
# print(f"latent_to_pil {latent.dtype=}")
with torch.no_grad():
decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
# print(f"latent_to_pil {decoded.shape=}")
image = (decoded/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
return Image.fromarray((image*255).round().astype("uint8"))
def image_grid(self, imgs: [Image]) -> Image:
print(len(imgs))
w,h = imgs[0].size
cols = len(imgs)
grid = Image.new('RGB', size=(cols*w, h))
for i, img in enumerate(imgs):
# print(f"{img.size=}")
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def text_enc(self, prompt:str, maxlen=None) -> torch.Tensor:
'''tokenize and encode a prompt'''
if maxlen is None: maxlen = self.tokenizer.model_max_length
inp = self.tokenizer([prompt], padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
return self.text_encoder(inp.input_ids.to(self.device))[0].float()
def tensor_to_pil(self, t:torch.Tensor) -> Image:
'''transforms a tensor decoded by the vae to a pil image'''
# print(f"tensor_to_pil {t.shape=} {type(t)=}")
image = (t/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
return Image.fromarray((image*255).round().astype("uint8"))
def latent_callback(self, latent:torch.Tensor) -> None:
'''store latents in an array so that we can inpect them later.'''
with torch.no_grad():
# print(f"cb {latent.shape=}")
decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
self.latent_images.append(self.tensor_to_pil(decoded))
def generate(self,
prompt : str="",
secondary_prompt: str=None,
prompt_mix_ratio : float=0.5,
negative_prompt="",
seed : int=32,
guidance :float=7.5,
steps : int=30,
start_step_ratio : float=1/5,
init_image : Image=None,
latent_callback_mod : int=10,
progress_tqdm: callable=tqdm):
self.latent_images = []
if not negative_prompt: negative_prompt = ""
print(f"ImageGenerator: {prompt=} {secondary_prompt=} {prompt_mix_ratio=} {negative_prompt=} {guidance=} {steps=} {init_image=} ")
with torch.no_grad():
text = self.text_enc(prompt)
if secondary_prompt:
print("using secondary prompt")
sec_prompt_text = self.text_enc(secondary_prompt)
text = text * prompt_mix_ratio + sec_prompt_text * ( 1 - prompt_mix_ratio )
uncond = self.text_enc(negative_prompt * self.bs, text.shape[1])
emb = torch.cat([uncond, text])
if seed: torch.manual_seed(seed)
self.scheduler.set_timesteps(steps)
self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32)
if (init_image == None):
start_steps = 0
latents = torch.randn(
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
generator = self.generator)
latents = latents * self.scheduler.init_noise_sigma
# print(f"{latents.shape=}")
else:
print("using base image")
start_steps = int(steps * start_step_ratio) # 0%: too much noise, 100% no noise
# print(f"{start_steps=}")
latents =self.pil_to_latent(init_image)
self.latent_callback(latents)
latents = self.add_noise(latents, start_steps).to(self.device).float()
self.latent_callback(latents)
latents = latents.to(self.device).float()
for i,ts in enumerate(progress_tqdm(self.scheduler.timesteps, desc="Latent Generation")): #leave=False, does not work with gradio
if i >= start_steps:
inp = self.scheduler.scale_model_input(torch.cat([latents] * 2), ts)
with torch.no_grad():
u,t = self.unet(inp, ts, encoder_hidden_states=emb).sample.chunk(2) #todo, grab those with callbacks
pred = u + guidance*(t-u)
# pred = u + self.g*(t-u)/torch.norm(t-u)*torch.norm(u)
latents = self.scheduler.step(pred, ts, latents).prev_sample
if latent_callback_mod and i % latent_callback_mod == 0:
self.latent_callback(latents)
return self.latent_to_pil(latents), self.latent_images