Spaces:
Sleeping
Sleeping
make device a var, custom gradio interface
Browse files- app.py +37 -3
- image_generator.py +185 -0
app.py
CHANGED
@@ -1,7 +1,41 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from image_generator import ImageGenerator
|
3 |
|
4 |
+
ig = ImageGenerator(g=7.5)
|
5 |
+
print(ig)
|
6 |
+
ig.load_models()
|
7 |
+
ig.load_scheduler()
|
8 |
|
9 |
+
def greet(prompt, mix_prompt, mix_ratio, negative_prompt, steps, init_image ):
|
10 |
+
|
11 |
+
print(f"{prompt=} {mix_prompt=} {mix_ratio=} {negative_prompt=} {steps=} {init_image=} ")
|
12 |
+
generated_image, latents = ig.generate(
|
13 |
+
prompt=prompt,
|
14 |
+
secondary_prompt=mix_prompt,
|
15 |
+
prompt_mix_ratio=mix_ratio,
|
16 |
+
negative_prompt=negative_prompt,
|
17 |
+
steps=steps,
|
18 |
+
init_image=init_image,
|
19 |
+
latent_callback_mod=None )
|
20 |
+
|
21 |
+
if init_image is not None:
|
22 |
+
noisy_latent = latents[1]
|
23 |
+
else:
|
24 |
+
noisy_latent = None
|
25 |
+
|
26 |
+
return generated_image, noisy_latent
|
27 |
+
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=greet,
|
30 |
+
inputs=[
|
31 |
+
gr.Textbox(value="a cute dog", label="Prompt", info="primary prompt used to generate an image"),
|
32 |
+
gr.Textbox(value=None, label="Secondary Prompt", info="secondary prompt to mix with the primary embeddings"),
|
33 |
+
gr.Slider(0, 1, value=0.5, label="Mix Ratio", info="mix ratio between primary and secondary prompt. 0 = primary only. 1 = secondary only"),
|
34 |
+
gr.Textbox(value=None, label="Negative Prompt", info="remove certain aspect from the picture"),
|
35 |
+
gr.Slider(10, 50, value=30, step=1, label="Generation Steps", info="How many steps are used to generate the picture"),
|
36 |
+
gr.Image(type="pil", value=None, label="Starting Image",), # info="starting image from this image as opposed to random noise"
|
37 |
+
],
|
38 |
+
outputs=[
|
39 |
+
gr.Image(type="pil", label="Generated Image",),
|
40 |
+
gr.Image(type="pil", label="Starting Image with Added Noise",)])
|
41 |
iface.launch()
|
image_generator.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
from fastcore.all import concat
|
8 |
+
from huggingface_hub import notebook_login
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
# from IPython.display import display
|
12 |
+
from torchvision import transforms as tfms
|
13 |
+
|
14 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
15 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
16 |
+
from diffusers import LMSDiscreteScheduler
|
17 |
+
from tqdm.auto import tqdm
|
18 |
+
|
19 |
+
logging.disable(logging.WARNING)
|
20 |
+
class ImageGenerator():
|
21 |
+
def __init__(self,
|
22 |
+
g:int=7.5,
|
23 |
+
):
|
24 |
+
self.latent_images = []
|
25 |
+
self.g = g
|
26 |
+
self.width = 512
|
27 |
+
self.height = 512
|
28 |
+
self.generator = torch.manual_seed(32)
|
29 |
+
self.bs = 1
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
self.device = torch.device("cuda")
|
32 |
+
self.dtype = torch.float16
|
33 |
+
else:
|
34 |
+
self.device = torch.device("cpu")
|
35 |
+
self.dtype = torch.float32
|
36 |
+
|
37 |
+
print(f"Working on device: {self.device=}")
|
38 |
+
def __repr__(self):
|
39 |
+
return f"Image Generator with {self.g=}"
|
40 |
+
|
41 |
+
def load_models(self):
|
42 |
+
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.dtype)
|
43 |
+
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=self.dtype).to(self.device)
|
44 |
+
# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema", torch_dtype=self.dtype ).to(self.device)
|
45 |
+
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(self.device)
|
46 |
+
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet").to(self.device) #torch_dtype=torch.float16,
|
47 |
+
|
48 |
+
def load_scheduler( self,
|
49 |
+
beta_start : float=0.00085,
|
50 |
+
beta_end : float=0.012,
|
51 |
+
beta_schedule : str="scaled_linear",
|
52 |
+
num_train_timesteps :int=1000):
|
53 |
+
|
54 |
+
self.scheduler = LMSDiscreteScheduler(
|
55 |
+
beta_start=beta_start,
|
56 |
+
beta_end=beta_end,
|
57 |
+
beta_schedule="scaled_linear",
|
58 |
+
num_train_timesteps=num_train_timesteps)
|
59 |
+
|
60 |
+
def load_image(self, filepath:str) -> Image:
|
61 |
+
return Image.open(filepath).resize(size=(self.width,self.height))
|
62 |
+
#.convert("RGB") # RGB = 3 dimensions, RGBA = 4 dimensions
|
63 |
+
|
64 |
+
def nparray_to_pil(self, np_image: np.array) -> Image:
|
65 |
+
return Image.fromarray(np_image).resize(size=(self.width,self.height))
|
66 |
+
|
67 |
+
def pil_to_latent(self, image: Image) -> torch.Tensor:
|
68 |
+
with torch.no_grad():
|
69 |
+
np_img = np.transpose( (( np.array(image) / 255)-0.5)*2, (2,0,1)) # turn pil image into np array with values between -1 and 1
|
70 |
+
# print(f"{np_img.shape=}") # 4, 64, 64
|
71 |
+
|
72 |
+
np_images = np.repeat(np_img[np.newaxis, :, :], self.bs, axis=0) # adding a new dimension and repeating the image for each prompt
|
73 |
+
# print(f"{np_images.shape=}")
|
74 |
+
|
75 |
+
decoded_latent = torch.from_numpy(np_images).to(self.device).float() #<-- stability-ai vae uses half(), compvis vae uses float?
|
76 |
+
# print(f"{decoded_latent.shape=}")
|
77 |
+
|
78 |
+
encoded_latent = 0.18215 * self.vae.encode(decoded_latent).latent_dist.sample()
|
79 |
+
# print(f"{encoded_latent.shape=}")
|
80 |
+
|
81 |
+
return encoded_latent
|
82 |
+
|
83 |
+
def add_noise(self, latent: torch.Tensor, scheduler_steps: int = 10) -> torch.FloatTensor:
|
84 |
+
# noise = torch.randn_like(latent) # missing generator parameter
|
85 |
+
noise = torch.randn(
|
86 |
+
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
|
87 |
+
generator = self.generator).to(self.device)
|
88 |
+
timesteps = torch.tensor([self.scheduler.timesteps[scheduler_steps]])
|
89 |
+
noisy_latent = self.scheduler.add_noise(latent, noise, timesteps)
|
90 |
+
# print(f"add_noise: {timesteps.shape=} {timesteps=} {noisy_latent.shape=}")
|
91 |
+
return noisy_latent
|
92 |
+
|
93 |
+
def latent_to_pil(self, latent:torch.Tensor) -> Image:
|
94 |
+
# print(f"latent_to_pil {latent.dtype=}")
|
95 |
+
with torch.no_grad():
|
96 |
+
decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
|
97 |
+
# print(f"latent_to_pil {decoded.shape=}")
|
98 |
+
image = (decoded/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
|
99 |
+
return Image.fromarray((image*255).round().astype("uint8"))
|
100 |
+
|
101 |
+
def image_grid(self, imgs: [Image]) -> Image:
|
102 |
+
w,h = imgs[0].size
|
103 |
+
cols = len(imgs)
|
104 |
+
grid = Image.new('RGB', size=(cols*w, h))
|
105 |
+
for i, img in enumerate(imgs):
|
106 |
+
# print(f"{img.size=}")
|
107 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
108 |
+
return grid
|
109 |
+
|
110 |
+
def text_enc(self, prompt:str, maxlen=None) -> torch.Tensor:
|
111 |
+
'''tokenize and encode a prompt'''
|
112 |
+
if maxlen is None: maxlen = self.tokenizer.model_max_length
|
113 |
+
|
114 |
+
inp = self.tokenizer([prompt], padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
|
115 |
+
return self.text_encoder(inp.input_ids.to(self.device))[0].float()
|
116 |
+
|
117 |
+
def tensor_to_pil(self, t:torch.Tensor) -> Image:
|
118 |
+
'''transforms a tensor decoded by the vae to a pil image'''
|
119 |
+
# print(f"tensor_to_pil {t.shape=} {type(t)=}")
|
120 |
+
image = (t/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
|
121 |
+
return Image.fromarray((image*255).round().astype("uint8"))
|
122 |
+
|
123 |
+
def latent_callback(self, latent:torch.Tensor) -> None:
|
124 |
+
'''store latents in an array so that we can inpect them later.'''
|
125 |
+
with torch.no_grad():
|
126 |
+
# print(f"cb {latent.shape=}")
|
127 |
+
decoded = self.vae.decode(1 / 0.18215 * latent).sample[0]
|
128 |
+
self.latent_images.append(self.tensor_to_pil(decoded))
|
129 |
+
|
130 |
+
def generate(self,
|
131 |
+
prompt : str,
|
132 |
+
secondary_prompt: str=None,
|
133 |
+
prompt_mix_ratio : float=0.5,
|
134 |
+
negative_prompt="",
|
135 |
+
seed : int=32,
|
136 |
+
steps : int=30,
|
137 |
+
start_step_ratio : float=1/5,
|
138 |
+
init_image : Image=None,
|
139 |
+
latent_callback_mod : int=10):
|
140 |
+
self.latent_images = []
|
141 |
+
if not negative_prompt: negative_prompt = ""
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
text = self.text_enc(prompt)
|
145 |
+
if secondary_prompt:
|
146 |
+
sec_prompt_text = self.text_enc(secondary_prompt)
|
147 |
+
text = text * prompt_mix_ratio + sec_prompt_text * ( 1 - prompt_mix_ratio )
|
148 |
+
uncond = self.text_enc(negative_prompt * self.bs, text.shape[1])
|
149 |
+
emb = torch.cat([uncond, text])
|
150 |
+
if seed: torch.manual_seed(seed)
|
151 |
+
|
152 |
+
self.scheduler.set_timesteps(steps)
|
153 |
+
self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32)
|
154 |
+
|
155 |
+
if (init_image == None):
|
156 |
+
start_steps = 0
|
157 |
+
latents = torch.randn(
|
158 |
+
size = (self.bs, self.unet.config.in_channels, self.height//8, self.width//8),
|
159 |
+
generator = self.generator)
|
160 |
+
latents = latents * self.scheduler.init_noise_sigma
|
161 |
+
# print(f"{latents.shape=}")
|
162 |
+
else:
|
163 |
+
start_steps = int(steps * start_step_ratio) # 0%: too much noise, 100% no noise
|
164 |
+
# print(f"{start_steps=}")
|
165 |
+
# img = self.load_image(init_image)
|
166 |
+
latents =self.pil_to_latent(init_image)
|
167 |
+
self.latent_callback(latents)
|
168 |
+
latents = self.add_noise(latents, start_steps).to(self.device).float()
|
169 |
+
self.latent_callback(latents)
|
170 |
+
|
171 |
+
latents = latents.to(self.device).float()
|
172 |
+
|
173 |
+
for i,ts in enumerate(tqdm(self.scheduler.timesteps, leave=False)):
|
174 |
+
if i >= start_steps:
|
175 |
+
inp = self.scheduler.scale_model_input(torch.cat([latents] * 2), ts)
|
176 |
+
with torch.no_grad():
|
177 |
+
u,t = self.unet(inp, ts, encoder_hidden_states=emb).sample.chunk(2) #todo, grab those with callbacks
|
178 |
+
pred = u + self.g*(t-u)
|
179 |
+
# pred = u + self.g*(t-u)/torch.norm(t-u)*torch.norm(u)
|
180 |
+
latents = self.scheduler.step(pred, ts, latents).prev_sample
|
181 |
+
|
182 |
+
if latent_callback_mod and i % latent_callback_mod == 0:
|
183 |
+
self.latent_callback(latents)
|
184 |
+
|
185 |
+
return self.latent_to_pil(latents), self.latent_images
|