Spaces:
Sleeping
Sleeping
import gradio as gr | |
import fastai.vision.all as fv | |
from PIL import Image, ImageDraw | |
import skimage | |
learn = fv.load_learner("model.pkl") | |
def call(image, step_size:int=100, blocks:int=4): | |
# print(image) | |
original_image = Image.fromarray(image).resize((400,400)) | |
image = Image.new(mode='RGB', size=(step_size*blocks, step_size*blocks)) #, color=255 | |
draw = ImageDraw.Draw(image) | |
for (x,y) in [ (x,y) for x in range(0, blocks * step_size, step_size) for y in range(0, blocks * step_size, step_size)]: | |
cropped_image = original_image.crop((x, y, x+step_size, y+step_size)) | |
image.paste(cropped_image, (x,y)) | |
prediction = learn.predict(cropped_image) | |
print(prediction) | |
marker = f"{prediction[0][0].upper()} {prediction[2][prediction[1].item()].item()*100:.0f}" | |
position = (x+10, y+10) | |
bbox = draw.textbbox(position, marker, font=None) | |
draw.rectangle(bbox, fill="white") | |
draw.text(position, marker, font=None, fill="black") | |
draw = ImageDraw.Draw(image) | |
for x in range(0, blocks * step_size, step_size): | |
# vertical line | |
line = ((x, 0), (x, blocks * step_size)) | |
draw.line(line, fill=128, width=3) | |
# horizontal line | |
line = ((0, x), (blocks * step_size, x)) | |
draw.line(line, fill=128, width=3) | |
return image | |
title = "Traffic Light Detector" | |
description = "Experiment traffic light detection to evaluate the value of captcha security controls" | |
iface = gr.Interface(fn=call, inputs="image", outputs="image", title=title, description=description) | |
iface.launch() |