Spaces:
Sleeping
Sleeping
switch to nvidia seg model
Browse files- .gitignore +7 -1
- app.py +88 -35
- app.pybak +54 -0
.gitignore
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
.venv/**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv/**
|
2 |
+
datasets/**
|
3 |
+
.DS_Store
|
4 |
+
dataset.py
|
5 |
+
out.jpeg
|
6 |
+
out2.jpeg
|
7 |
+
__pycache__
|
app.py
CHANGED
@@ -1,42 +1,95 @@
|
|
1 |
-
import
|
2 |
-
import fastai.vision.all as fv
|
3 |
from PIL import Image, ImageDraw
|
4 |
-
import
|
|
|
|
|
5 |
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
|
41 |
title = "Traffic Light Detector"
|
42 |
description = "Experiment traffic light detection to evaluate the value of captcha security controls"
|
|
|
1 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
+
import numpy as np
|
4 |
+
from torch import nn
|
5 |
+
import gradio as gr
|
6 |
import os
|
7 |
|
8 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
9 |
+
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
10 |
+
|
11 |
+
def cityscapes_palette():
|
12 |
+
"""Cityscapes palette for external use."""
|
13 |
+
return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
|
14 |
+
[190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0],
|
15 |
+
[107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60],
|
16 |
+
[255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100],
|
17 |
+
[0, 0, 230], [119, 11, 32]]
|
18 |
+
|
19 |
+
def cityscapes_classes():
|
20 |
+
"""Cityscapes class names for external use."""
|
21 |
+
return [
|
22 |
+
'road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
|
23 |
+
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky',
|
24 |
+
'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
|
25 |
+
'bicycle'
|
26 |
+
]
|
27 |
+
|
28 |
+
def annotation(image:ImageDraw, color_seg:np.array):
|
29 |
+
assert image.size == (1024, 1024)
|
30 |
+
assert color_seg.shape == (1024, 1024, 3)
|
31 |
+
blocks = 4 # 4x4 sub grid
|
32 |
+
step_size = 256 # sub square edge size
|
33 |
+
|
34 |
+
draw = ImageDraw.Draw(image)
|
35 |
+
|
36 |
+
sub_square_xy = [(x,y) for x in range(0, blocks * step_size, step_size) for y in range(0, blocks * step_size, step_size)]
|
37 |
+
# print(f"{sub_square_xy=}")
|
38 |
+
for (x,y) in sub_square_xy:
|
39 |
+
reduced_seg = color_seg.sum(axis=2) # collapsing all colors into 1024 x 1024
|
40 |
+
# print(f"{reduced_seg.shape=}")
|
41 |
+
|
42 |
+
sub_square_seg = reduced_seg[ y:y+step_size, x:x+step_size]
|
43 |
+
# print(f"{sub_square_seg.shape=}, {sub_square_seg.sum()}")
|
44 |
+
|
45 |
+
if (sub_square_seg.sum() > 1000000):
|
46 |
+
print("light found at square ", x, y)
|
47 |
+
draw.rectangle([(x, y), (x + step_size, y + step_size)], outline=128, width=3)
|
48 |
+
|
49 |
+
def call(image: Image):
|
50 |
+
resized_image = original_image.resize((1024,1024))
|
51 |
+
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
52 |
+
inputs = feature_extractor(images=resized_image, return_tensors="pt")
|
53 |
+
|
54 |
+
outputs = model(**inputs)
|
55 |
+
print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
|
56 |
+
# print(f"{logits}")
|
57 |
+
|
58 |
+
# First, rescale logits to original image size
|
59 |
+
interpolated_logits = nn.functional.interpolate(
|
60 |
+
outputs.logits,
|
61 |
+
size=resized_image.size[::-1], # (height, width)
|
62 |
+
mode='bilinear',
|
63 |
+
align_corners=False)
|
64 |
+
print(f"{interpolated_logits.shape=}, {outputs.logits.shape=}") # 1, 19, 1024, 1024
|
65 |
+
|
66 |
+
# Second, apply argmax on the class dimension
|
67 |
+
seg = interpolated_logits.argmax(dim=1)[0]
|
68 |
+
print(f"{seg.shape=}")
|
69 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
70 |
+
print(f"{color_seg.shape=}")
|
71 |
+
|
72 |
+
for label, color in enumerate(cityscapes_palette()):
|
73 |
+
if (label == 6): color_seg[seg == label, :] = color
|
74 |
+
|
75 |
+
# Convert to BGR
|
76 |
+
color_seg = color_seg[..., ::-1]
|
77 |
+
print(f"{color_seg.shape=}")
|
78 |
+
|
79 |
+
# Show image + mask
|
80 |
+
img = np.array(resized_image) * 0.5 + color_seg * 0.5
|
81 |
+
img = img.astype(np.uint8)
|
82 |
+
|
83 |
+
out_im_file = Image.fromarray(img)
|
84 |
+
annotation(out_im_file, color_seg)
|
85 |
+
|
86 |
+
return out_im_file
|
87 |
+
|
88 |
+
original_image = Image.open("./examples/1.jpg")
|
89 |
+
print(f"{np.array(original_image).shape=}") # eg 729, 1000, 3
|
90 |
|
91 |
+
# out = call(original_image)
|
92 |
+
# out.save("out2.jpeg")
|
93 |
|
94 |
title = "Traffic Light Detector"
|
95 |
description = "Experiment traffic light detection to evaluate the value of captcha security controls"
|
app.pybak
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import fastai.vision.all as fv
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import skimage
|
5 |
+
import os
|
6 |
+
|
7 |
+
learn = fv.load_learner("model.pkl")
|
8 |
+
|
9 |
+
def call(image, step_size:int=100, blocks:int=4):
|
10 |
+
# print(image)
|
11 |
+
original_image = Image.fromarray(image).resize((400,400))
|
12 |
+
|
13 |
+
image = Image.new(mode='RGB', size=(step_size*blocks, step_size*blocks)) #, color=255
|
14 |
+
|
15 |
+
draw = ImageDraw.Draw(image)
|
16 |
+
for (x,y) in [ (x,y) for x in range(0, blocks * step_size, step_size) for y in range(0, blocks * step_size, step_size)]:
|
17 |
+
cropped_image = original_image.crop((x, y, x+step_size, y+step_size))
|
18 |
+
image.paste(cropped_image, (x,y))
|
19 |
+
prediction = learn.predict(cropped_image)
|
20 |
+
print(prediction)
|
21 |
+
marker = f"{prediction[0][0].upper()} {prediction[2][prediction[1].item()].item()*100:.0f}"
|
22 |
+
position = (x+10, y+10)
|
23 |
+
|
24 |
+
bbox = draw.textbbox(position, marker, font=None)
|
25 |
+
draw.rectangle(bbox, fill="white")
|
26 |
+
draw.text(position, marker, font=None, fill="black")
|
27 |
+
|
28 |
+
draw = ImageDraw.Draw(image)
|
29 |
+
for x in range(0, blocks * step_size, step_size):
|
30 |
+
# vertical line
|
31 |
+
line = ((x, 0), (x, blocks * step_size))
|
32 |
+
draw.line(line, fill=128, width=3)
|
33 |
+
|
34 |
+
# horizontal line
|
35 |
+
line = ((0, x), (blocks * step_size, x))
|
36 |
+
draw.line(line, fill=128, width=3)
|
37 |
+
|
38 |
+
return image
|
39 |
+
|
40 |
+
|
41 |
+
title = "Traffic Light Detector"
|
42 |
+
description = "Experiment traffic light detection to evaluate the value of captcha security controls"
|
43 |
+
|
44 |
+
iface = gr.Interface(fn=call,
|
45 |
+
inputs="image",
|
46 |
+
outputs="image",
|
47 |
+
title=title,
|
48 |
+
description=description,
|
49 |
+
examples=[
|
50 |
+
os.path.join(os.path.dirname(__file__), "examples/1.jpg"),
|
51 |
+
os.path.join(os.path.dirname(__file__), "examples/2.jpg")
|
52 |
+
],
|
53 |
+
thumbnail="thumbnail.webp")
|
54 |
+
iface.launch()
|