Spaces:
Build error
Build error
Matthew Hollings
commited on
Commit
•
9de53c6
1
Parent(s):
5497d17
Fine-tune a GPT model and load into the interface.
Browse files- .gitignore +3 -1
- README.md +16 -10
- app.py +1 -1
- fine-tune-llm.ipynb +129 -15
- fine-tuning-for-casual-language-model.ipynb +603 -0
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
__pycache__
|
2 |
flagged/
|
3 |
-
gutenberg-dammit-files-v002.zip
|
|
|
|
|
|
1 |
__pycache__
|
2 |
flagged/
|
3 |
+
gutenberg-dammit-files-v002.zip
|
4 |
+
tmp_trainer
|
5 |
+
*.gz
|
README.md
CHANGED
@@ -10,23 +10,29 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
- 1. fine-tune a large language model (LLM) using the text corpus of a specific poet
|
13 |
-
|
14 |
-
|
15 |
-
-
|
16 |
-
- 2.1 the poem should persist on machine reload
|
17 |
-
- 2.2 it should be possible to remove the last line and rerun
|
18 |
-
- 2.3 retry to get a new response from the model
|
19 |
|
20 |
run in a docker container and transfer to another machine
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
## Research
|
23 |
|
24 |
<https://github.com/aparrish/gutenberg-dammit/>
|
25 |
-
TODO:
|
26 |
-
automatically activate conda env on cd in directory
|
27 |
implement language generation with a basic transformer
|
28 |
-
get the website running to display responses in a user friendly way
|
29 |
-
Docker image?
|
30 |
|
31 |
<https://github.com/aparrish/gutenberg-poetry-corpus>
|
32 |
Gutenberg Poetry Autocomplete, a search engine-like interface for writing poems mined from Project Gutenberg. (A poem written using this interface was recently published in the Indianapolis Review!)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
- 1. fine-tune a large language model (LLM) using the text corpus of a specific poet
|
13 |
+
|
14 |
+
- select a certain rhyme from the gutenberg corpus and fine-tune on this
|
15 |
+
- try fine-tuning on a few lines of a poem that Eva has started
|
|
|
|
|
|
|
16 |
|
17 |
run in a docker container and transfer to another machine
|
18 |
|
19 |
+
Is it better to have a sequence to sequence transformer trained on sucessive lines of the poetry corpus??
|
20 |
+
|
21 |
+
merve/poetry only has 573 rows.
|
22 |
+
|
23 |
+
TODO: - upload the gutenberg poetry corpus up to huggingface - ask the lady who made it
|
24 |
+
|
25 |
## Research
|
26 |
|
27 |
<https://github.com/aparrish/gutenberg-dammit/>
|
|
|
|
|
28 |
implement language generation with a basic transformer
|
|
|
|
|
29 |
|
30 |
<https://github.com/aparrish/gutenberg-poetry-corpus>
|
31 |
Gutenberg Poetry Autocomplete, a search engine-like interface for writing poems mined from Project Gutenberg. (A poem written using this interface was recently published in the Indianapolis Review!)
|
32 |
+
|
33 |
+
https://ymeadows.com/en-articles/fine-tuning-transformer-based-language-models
|
34 |
+
https://thegradient.pub/prompting/
|
35 |
+
https://towardsdatascience.com/fine-tuning-for-domain-adaptation-in-nlp-c47def356fd6
|
36 |
+
https://ruder.io/recent-advances-lm-fine-tuning/
|
37 |
+
|
38 |
+
https://streamlit.io/
|
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set up the generatove model transformer pipeline
|
6 |
-
generator = pipeline("text-generation", model="
|
7 |
|
8 |
# A sequence of lines both those typed in and the line so far
|
9 |
# when save is clicked the txt file is downloaded
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set up the generatove model transformer pipeline
|
6 |
+
generator = pipeline("text-generation", model="tmp_trainer")
|
7 |
|
8 |
# A sequence of lines both those typed in and the line so far
|
9 |
# when save is clicked the txt file is downloaded
|
fine-tune-llm.ipynb
CHANGED
@@ -379,30 +379,32 @@
|
|
379 |
},
|
380 |
{
|
381 |
"cell_type": "code",
|
382 |
-
"execution_count":
|
383 |
"metadata": {},
|
384 |
"outputs": [
|
385 |
{
|
386 |
"data": {
|
387 |
"text/plain": [
|
388 |
-
"{'Author': ['
|
389 |
-
" 'Author Birth': [
|
390 |
-
" 'Author Death': [
|
391 |
-
" 'Author Given': ['
|
392 |
-
" 'Author Surname': ['
|
393 |
" 'Copyright Status': ['Not copyrighted in the United States.'],\n",
|
394 |
" 'Language': ['English'],\n",
|
395 |
-
" 'LoC Class': ['
|
396 |
-
" 'Num': '
|
397 |
-
" 'Subject': ['
|
398 |
-
"
|
|
|
|
|
399 |
" 'charset': 'us-ascii',\n",
|
400 |
-
" 'gd-num-padded': '
|
401 |
-
" 'gd-path': '001/
|
402 |
-
" 'href': '/1/0/
|
403 |
]
|
404 |
},
|
405 |
-
"execution_count":
|
406 |
"metadata": {},
|
407 |
"output_type": "execute_result"
|
408 |
}
|
@@ -410,7 +412,7 @@
|
|
410 |
"source": [
|
411 |
"from gutenbergdammit.ziputils import loadmetadata\n",
|
412 |
"metadata = loadmetadata(\"gutenberg-dammit-files-v002.zip\")\n",
|
413 |
-
"metadata[
|
414 |
"# ['Essays in the Art of Writing']"
|
415 |
]
|
416 |
},
|
@@ -557,6 +559,118 @@
|
|
557 |
"tf.config.list_physical_devices('CPU')"
|
558 |
]
|
559 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
{
|
561 |
"cell_type": "code",
|
562 |
"execution_count": null,
|
|
|
379 |
},
|
380 |
{
|
381 |
"cell_type": "code",
|
382 |
+
"execution_count": 23,
|
383 |
"metadata": {},
|
384 |
"outputs": [
|
385 |
{
|
386 |
"data": {
|
387 |
"text/plain": [
|
388 |
+
"{'Author': ['Franklin Delano Roosevelt'],\n",
|
389 |
+
" 'Author Birth': [1882],\n",
|
390 |
+
" 'Author Death': [1945],\n",
|
391 |
+
" 'Author Given': ['Franklin Delano'],\n",
|
392 |
+
" 'Author Surname': ['Roosevelt'],\n",
|
393 |
" 'Copyright Status': ['Not copyrighted in the United States.'],\n",
|
394 |
" 'Language': ['English'],\n",
|
395 |
+
" 'LoC Class': ['E740: History: America: Twentieth century'],\n",
|
396 |
+
" 'Num': '104',\n",
|
397 |
+
" 'Subject': ['New Deal, 1933-1939',\n",
|
398 |
+
" 'Presidents -- United States -- Inaugural addresses',\n",
|
399 |
+
" 'United States -- Politics and government -- 1933-1945'],\n",
|
400 |
+
" 'Title': [\"Franklin Delano Roosevelt's First Inaugural Address\"],\n",
|
401 |
" 'charset': 'us-ascii',\n",
|
402 |
+
" 'gd-num-padded': '00104',\n",
|
403 |
+
" 'gd-path': '001/00104.txt',\n",
|
404 |
+
" 'href': '/1/0/104/104.zip'}"
|
405 |
]
|
406 |
},
|
407 |
+
"execution_count": 23,
|
408 |
"metadata": {},
|
409 |
"output_type": "execute_result"
|
410 |
}
|
|
|
412 |
"source": [
|
413 |
"from gutenbergdammit.ziputils import loadmetadata\n",
|
414 |
"metadata = loadmetadata(\"gutenberg-dammit-files-v002.zip\")\n",
|
415 |
+
"metadata[101]\n",
|
416 |
"# ['Essays in the Art of Writing']"
|
417 |
]
|
418 |
},
|
|
|
559 |
"tf.config.list_physical_devices('CPU')"
|
560 |
]
|
561 |
},
|
562 |
+
{
|
563 |
+
"cell_type": "markdown",
|
564 |
+
"metadata": {},
|
565 |
+
"source": [
|
566 |
+
"# Source data"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "markdown",
|
571 |
+
"metadata": {},
|
572 |
+
"source": [
|
573 |
+
"curl -O http://static.decontextualize.com/gutenberg-poetry-v001.ndjson.gz"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"cell_type": "code",
|
578 |
+
"execution_count": 25,
|
579 |
+
"metadata": {},
|
580 |
+
"outputs": [],
|
581 |
+
"source": [
|
582 |
+
"import gzip, json\n",
|
583 |
+
"all_lines = []\n",
|
584 |
+
"for line in gzip.open(\"gutenberg-poetry-v001.ndjson.gz\"):\n",
|
585 |
+
" all_lines.append(json.loads(line.strip()))"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 34,
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [
|
593 |
+
{
|
594 |
+
"name": "stdout",
|
595 |
+
"output_type": "stream",
|
596 |
+
"text": [
|
597 |
+
"[{'s': 'The Song of Hiawatha is based on the legends and stories of', 'gid': '19'}, {'s': 'many North American Indian tribes, but especially those of the', 'gid': '19'}, {'s': 'Ojibway Indians of northern Michigan, Wisconsin, and Minnesota.', 'gid': '19'}, {'s': 'They were collected by Henry Rowe Schoolcraft, the reknowned', 'gid': '19'}, {'s': 'Schoolcraft married Jane, O-bah-bahm-wawa-ge-zhe-go-qua (The', 'gid': '19'}, {'s': 'fur trader, and O-shau-gus-coday-way-qua (The Woman of the Green', 'gid': '19'}, {'s': 'Prairie), who was a daughter of Waub-o-jeeg (The White Fisher),', 'gid': '19'}, {'s': 'who was Chief of the Ojibway tribe at La Pointe, Wisconsin.', 'gid': '19'}, {'s': 'Jane and her mother are credited with having researched,', 'gid': '19'}, {'s': 'authenticated, and compiled much of the material Schoolcraft', 'gid': '19'}]\n"
|
598 |
+
]
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"source": [
|
602 |
+
"import random\n",
|
603 |
+
"random.sample(all_lines, 8)\n",
|
604 |
+
"\n",
|
605 |
+
"print(all_lines[0:10])\n",
|
606 |
+
"\n"
|
607 |
+
]
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"cell_type": "code",
|
611 |
+
"execution_count": 33,
|
612 |
+
"metadata": {},
|
613 |
+
"outputs": [
|
614 |
+
{
|
615 |
+
"data": {
|
616 |
+
"text/plain": [
|
617 |
+
"{'Author': ['Henry Rider Haggard'],\n",
|
618 |
+
" 'Author Birth': [1856],\n",
|
619 |
+
" 'Author Death': [1925],\n",
|
620 |
+
" 'Author Given': ['Henry Rider'],\n",
|
621 |
+
" 'Author Surname': ['Haggard'],\n",
|
622 |
+
" 'Copyright Status': ['Not copyrighted in the United States.'],\n",
|
623 |
+
" 'Language': ['English'],\n",
|
624 |
+
" 'LoC Class': ['PR: Language and Literatures: English literature'],\n",
|
625 |
+
" 'Num': '2721',\n",
|
626 |
+
" 'Subject': ['Iceland -- Fiction'],\n",
|
627 |
+
" 'Title': ['Eric Brighteyes'],\n",
|
628 |
+
" 'charset': 'iso-8859-1',\n",
|
629 |
+
" 'gd-num-padded': '02721',\n",
|
630 |
+
" 'gd-path': '027/02721.txt',\n",
|
631 |
+
" 'href': '/2/7/2/2721/2721_8.zip'}"
|
632 |
+
]
|
633 |
+
},
|
634 |
+
"execution_count": 33,
|
635 |
+
"metadata": {},
|
636 |
+
"output_type": "execute_result"
|
637 |
+
}
|
638 |
+
],
|
639 |
+
"source": [
|
640 |
+
"from gutenbergdammit.ziputils import loadmetadata\n",
|
641 |
+
"metadata = loadmetadata(\"gutenberg-dammit-files-v002.zip\")\n",
|
642 |
+
"metadata[2620]"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": 37,
|
648 |
+
"metadata": {},
|
649 |
+
"outputs": [
|
650 |
+
{
|
651 |
+
"data": {
|
652 |
+
"text/plain": [
|
653 |
+
"['The Song of Hiawatha is based on the legends and stories of',\n",
|
654 |
+
" 'many North American Indian tribes, but especially those of the',\n",
|
655 |
+
" 'Ojibway Indians of northern Michigan, Wisconsin, and Minnesota.',\n",
|
656 |
+
" 'They were collected by Henry Rowe Schoolcraft, the reknowned',\n",
|
657 |
+
" 'Schoolcraft married Jane, O-bah-bahm-wawa-ge-zhe-go-qua (The',\n",
|
658 |
+
" 'fur trader, and O-shau-gus-coday-way-qua (The Woman of the Green',\n",
|
659 |
+
" 'Prairie), who was a daughter of Waub-o-jeeg (The White Fisher),',\n",
|
660 |
+
" 'who was Chief of the Ojibway tribe at La Pointe, Wisconsin.',\n",
|
661 |
+
" 'Jane and her mother are credited with having researched,',\n",
|
662 |
+
" 'authenticated, and compiled much of the material Schoolcraft']"
|
663 |
+
]
|
664 |
+
},
|
665 |
+
"execution_count": 37,
|
666 |
+
"metadata": {},
|
667 |
+
"output_type": "execute_result"
|
668 |
+
}
|
669 |
+
],
|
670 |
+
"source": [
|
671 |
+
"[line['s'] for line in all_lines[0:10]]"
|
672 |
+
]
|
673 |
+
},
|
674 |
{
|
675 |
"cell_type": "code",
|
676 |
"execution_count": null,
|
fine-tuning-for-casual-language-model.ipynb
ADDED
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 43,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import transformers\n",
|
19 |
+
"from transformers import (\n",
|
20 |
+
" CONFIG_MAPPING,\n",
|
21 |
+
" MODEL_FOR_CAUSAL_LM_MAPPING,\n",
|
22 |
+
" AutoConfig,\n",
|
23 |
+
" AutoModelForCausalLM,\n",
|
24 |
+
" AutoTokenizer,\n",
|
25 |
+
" HfArgumentParser,\n",
|
26 |
+
" Trainer,\n",
|
27 |
+
" TrainingArguments,\n",
|
28 |
+
" default_data_collator,\n",
|
29 |
+
" is_torch_tpu_available,\n",
|
30 |
+
" set_seed,\n",
|
31 |
+
")\n",
|
32 |
+
"\n",
|
33 |
+
"from itertools import chain\n",
|
34 |
+
"\n",
|
35 |
+
"from transformers.testing_utils import CaptureLogger\n",
|
36 |
+
"from transformers.trainer_utils import get_last_checkpoint\n",
|
37 |
+
"# from transformers.utils import check_min_version, send_example_telemetry\n",
|
38 |
+
"from transformers.utils.versions import require_version\n",
|
39 |
+
"\n",
|
40 |
+
"import datasets\n",
|
41 |
+
"from datasets import load_dataset"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 4,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"ename": "ImportError",
|
51 |
+
"evalue": "This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers.",
|
52 |
+
"output_type": "error",
|
53 |
+
"traceback": [
|
54 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
55 |
+
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
56 |
+
"Cell \u001b[0;32mIn [4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcheck_min_version\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m4.23.0.dev0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
57 |
+
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/utils/__init__.py:32\u001b[0m, in \u001b[0;36mcheck_min_version\u001b[0;34m(min_version)\u001b[0m\n\u001b[1;32m 30\u001b[0m error_message \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThis example requires a minimum version of \u001b[39m\u001b[39m{\u001b[39;00mmin_version\u001b[39m}\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 31\u001b[0m error_message \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m but the version found is \u001b[39m\u001b[39m{\u001b[39;00m__version__\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m---> 32\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mImportError\u001b[39;00m(\n\u001b[1;32m 33\u001b[0m error_message\n\u001b[1;32m 34\u001b[0m \u001b[39m+\u001b[39m (\n\u001b[1;32m 35\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 36\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mversions of HuggingFace Transformers.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 37\u001b[0m )\n\u001b[1;32m 38\u001b[0m )\n",
|
58 |
+
"\u001b[0;31mImportError\u001b[0m: This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers."
|
59 |
+
]
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"# check_min_version(\"4.23.0.dev0\")"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 9,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"require_version(\"datasets>=1.8.0\")"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 5,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"set_seed(37)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"metadata": {},
|
87 |
+
"source": [
|
88 |
+
"##### Get all of the huggingface objects that we need: tokenzier, gpt2 model, poetry dataset."
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": 10,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"name": "stderr",
|
98 |
+
"output_type": "stream",
|
99 |
+
"text": [
|
100 |
+
"Using custom data configuration merve--poetry-ca9a13ef5858cc3a\n"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"name": "stdout",
|
105 |
+
"output_type": "stream",
|
106 |
+
"text": [
|
107 |
+
"Downloading and preparing dataset csv/merve--poetry to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a...\n"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"data": {
|
112 |
+
"application/vnd.jupyter.widget-view+json": {
|
113 |
+
"model_id": "ed56ee6b324647798b19ac7bf5accc40",
|
114 |
+
"version_major": 2,
|
115 |
+
"version_minor": 0
|
116 |
+
},
|
117 |
+
"text/plain": [
|
118 |
+
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
"metadata": {},
|
122 |
+
"output_type": "display_data"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"data": {
|
126 |
+
"application/vnd.jupyter.widget-view+json": {
|
127 |
+
"model_id": "32c10441ff20404cb153f6b27f16a829",
|
128 |
+
"version_major": 2,
|
129 |
+
"version_minor": 0
|
130 |
+
},
|
131 |
+
"text/plain": [
|
132 |
+
"Downloading data: 0%| | 0.00/606k [00:00<?, ?B/s]"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
"metadata": {},
|
136 |
+
"output_type": "display_data"
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"data": {
|
140 |
+
"application/vnd.jupyter.widget-view+json": {
|
141 |
+
"model_id": "7ca47bc06937463e91d3948d7703ac64",
|
142 |
+
"version_major": 2,
|
143 |
+
"version_minor": 0
|
144 |
+
},
|
145 |
+
"text/plain": [
|
146 |
+
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
"metadata": {},
|
150 |
+
"output_type": "display_data"
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"data": {
|
154 |
+
"application/vnd.jupyter.widget-view+json": {
|
155 |
+
"model_id": "1631dbdc53d04b14a8a7733883bbd1cc",
|
156 |
+
"version_major": 2,
|
157 |
+
"version_minor": 0
|
158 |
+
},
|
159 |
+
"text/plain": [
|
160 |
+
"0 tables [00:00, ? tables/s]"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"metadata": {},
|
164 |
+
"output_type": "display_data"
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"name": "stdout",
|
168 |
+
"output_type": "stream",
|
169 |
+
"text": [
|
170 |
+
"Dataset csv downloaded and prepared to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a. Subsequent calls will reuse this data.\n"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"application/vnd.jupyter.widget-view+json": {
|
176 |
+
"model_id": "3c93229d66ad46d9a88da5f6a9528f2e",
|
177 |
+
"version_major": 2,
|
178 |
+
"version_minor": 0
|
179 |
+
},
|
180 |
+
"text/plain": [
|
181 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "display_data"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"raw_datasets = load_dataset(\"merve/poetry\")"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 12,
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"tokenizer = AutoTokenizer.from_pretrained('gpt2')"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 13,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"config = AutoConfig.from_pretrained('gpt2')"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": 16,
|
213 |
+
"metadata": {},
|
214 |
+
"outputs": [
|
215 |
+
{
|
216 |
+
"data": {
|
217 |
+
"text/plain": [
|
218 |
+
"Embedding(50257, 768)"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
"execution_count": 16,
|
222 |
+
"metadata": {},
|
223 |
+
"output_type": "execute_result"
|
224 |
+
}
|
225 |
+
],
|
226 |
+
"source": [
|
227 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
228 |
+
" \"gpt2\",\n",
|
229 |
+
" config=config\n",
|
230 |
+
")\n",
|
231 |
+
"model.resize_token_embeddings(len(tokenizer))"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"execution_count": 24,
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"data": {
|
241 |
+
"text/plain": [
|
242 |
+
"Dataset({\n",
|
243 |
+
" features: ['author', 'content', 'poem name', 'age', 'type'],\n",
|
244 |
+
" num_rows: 573\n",
|
245 |
+
"})"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
"execution_count": 24,
|
249 |
+
"metadata": {},
|
250 |
+
"output_type": "execute_result"
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"source": [
|
254 |
+
"raw_datasets['train']"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": 26,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [
|
262 |
+
{
|
263 |
+
"data": {
|
264 |
+
"text/plain": [
|
265 |
+
"'Mythology & Folklore'"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
"execution_count": 26,
|
269 |
+
"metadata": {},
|
270 |
+
"output_type": "execute_result"
|
271 |
+
}
|
272 |
+
],
|
273 |
+
"source": [
|
274 |
+
"raw_datasets['train']['type'][0]"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 28,
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"data": {
|
284 |
+
"text/plain": [
|
285 |
+
"DatasetDict({\n",
|
286 |
+
" train: Dataset({\n",
|
287 |
+
" features: ['author', 'content', 'poem name', 'age', 'type'],\n",
|
288 |
+
" num_rows: 573\n",
|
289 |
+
" })\n",
|
290 |
+
"})"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
"execution_count": 28,
|
294 |
+
"metadata": {},
|
295 |
+
"output_type": "execute_result"
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"source": [
|
299 |
+
"raw_datasets"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": 29,
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"tok_logger = transformers.utils.logging.get_logger(\n",
|
309 |
+
" \"transformers.tokenization_utils_base\"\n",
|
310 |
+
")"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": 30,
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": [
|
319 |
+
"def tokenize_function(examples):\n",
|
320 |
+
" with CaptureLogger(tok_logger) as cl:\n",
|
321 |
+
" output = tokenizer(examples[text_column_name])\n",
|
322 |
+
" # clm input could be much much longer than block_size\n",
|
323 |
+
" if \"Token indices sequence length is longer than the\" in cl.out:\n",
|
324 |
+
" tok_logger.warning(\n",
|
325 |
+
" \"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits\"\n",
|
326 |
+
" \" before being passed to the model.\"\n",
|
327 |
+
" )\n",
|
328 |
+
" return output"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 33,
|
334 |
+
"metadata": {},
|
335 |
+
"outputs": [],
|
336 |
+
"source": [
|
337 |
+
"column_names = raw_datasets[\"train\"].column_names\n",
|
338 |
+
"# text_column_name = \"text\" if \"text\" in column_names else column_names[0]\n",
|
339 |
+
"text_column_name = \"content\""
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 34,
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [
|
347 |
+
{
|
348 |
+
"data": {
|
349 |
+
"application/vnd.jupyter.widget-view+json": {
|
350 |
+
"model_id": "82c09dbdfa1a47d79607a4c9729fb286",
|
351 |
+
"version_major": 2,
|
352 |
+
"version_minor": 0
|
353 |
+
},
|
354 |
+
"text/plain": [
|
355 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
"metadata": {},
|
359 |
+
"output_type": "display_data"
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"name": "stderr",
|
363 |
+
"output_type": "stream",
|
364 |
+
"text": [
|
365 |
+
"Token indices sequence length is longer than the specified maximum sequence length for this model (7725 > 1024). Running this sequence through the model will result in indexing errors\n",
|
366 |
+
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model.\n"
|
367 |
+
]
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"source": [
|
371 |
+
"tokenized_datasets = raw_datasets.map(\n",
|
372 |
+
" tokenize_function,\n",
|
373 |
+
" batched=True,\n",
|
374 |
+
" # num_proc=data_args.preprocessing_num_workers,\n",
|
375 |
+
" remove_columns=column_names,\n",
|
376 |
+
" # load_from_cache_file=not data_args.overwrite_cache,\n",
|
377 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
378 |
+
")"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"execution_count": 39,
|
384 |
+
"metadata": {},
|
385 |
+
"outputs": [],
|
386 |
+
"source": [
|
387 |
+
"block_size = tokenizer.model_max_length"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": 41,
|
393 |
+
"metadata": {},
|
394 |
+
"outputs": [],
|
395 |
+
"source": [
|
396 |
+
"# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.\n",
|
397 |
+
"def group_texts(examples):\n",
|
398 |
+
" # Concatenate all texts.\n",
|
399 |
+
" concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}\n",
|
400 |
+
" total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
|
401 |
+
" # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
|
402 |
+
" # customize this part to your needs.\n",
|
403 |
+
" if total_length >= block_size:\n",
|
404 |
+
" total_length = (total_length // block_size) * block_size\n",
|
405 |
+
" # Split by chunks of max_len.\n",
|
406 |
+
" result = {\n",
|
407 |
+
" k: [t[i : i + block_size] for i in range(0, total_length, block_size)]\n",
|
408 |
+
" for k, t in concatenated_examples.items()\n",
|
409 |
+
" }\n",
|
410 |
+
" result[\"labels\"] = result[\"input_ids\"].copy()\n",
|
411 |
+
" return result"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "code",
|
416 |
+
"execution_count": 44,
|
417 |
+
"metadata": {},
|
418 |
+
"outputs": [
|
419 |
+
{
|
420 |
+
"data": {
|
421 |
+
"application/vnd.jupyter.widget-view+json": {
|
422 |
+
"model_id": "ca2f64461e304df6aecb16e8cfcd42ac",
|
423 |
+
"version_major": 2,
|
424 |
+
"version_minor": 0
|
425 |
+
},
|
426 |
+
"text/plain": [
|
427 |
+
"Grouping texts in chunks of 1024: 0%| | 0/1 [00:00<?, ?ba/s]"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
"metadata": {},
|
431 |
+
"output_type": "display_data"
|
432 |
+
}
|
433 |
+
],
|
434 |
+
"source": [
|
435 |
+
"lm_datasets = tokenized_datasets.map(\n",
|
436 |
+
" group_texts,\n",
|
437 |
+
" batched=True,\n",
|
438 |
+
" # num_proc=data_args.preprocessing_num_workers,\n",
|
439 |
+
" # load_from_cache_file=not data_args.overwrite_cache,\n",
|
440 |
+
" desc=f\"Grouping texts in chunks of {block_size}\",\n",
|
441 |
+
")"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "code",
|
446 |
+
"execution_count": 46,
|
447 |
+
"metadata": {},
|
448 |
+
"outputs": [],
|
449 |
+
"source": [
|
450 |
+
"train_dataset = lm_datasets[\"train\"]"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "markdown",
|
455 |
+
"metadata": {},
|
456 |
+
"source": [
|
457 |
+
"#### Do the fine-tuning"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": 47,
|
463 |
+
"metadata": {},
|
464 |
+
"outputs": [],
|
465 |
+
"source": [
|
466 |
+
"# Initialize our Trainer\n",
|
467 |
+
"trainer = Trainer(\n",
|
468 |
+
" model=model,\n",
|
469 |
+
" # args=training_args,\n",
|
470 |
+
" train_dataset=train_dataset,\n",
|
471 |
+
" # eval_dataset=eval_dataset,\n",
|
472 |
+
" tokenizer=tokenizer,\n",
|
473 |
+
" # Data collator will default to DataCollatorWithPadding, so we change it.\n",
|
474 |
+
" data_collator=default_data_collator,\n",
|
475 |
+
" # compute_metrics=compute_metrics\n",
|
476 |
+
" # if training_args.do_eval and not is_torch_tpu_available()\n",
|
477 |
+
" # else None,\n",
|
478 |
+
" # preprocess_logits_for_metrics=preprocess_logits_for_metrics\n",
|
479 |
+
" # if training_args.do_eval and not is_torch_tpu_available()\n",
|
480 |
+
" # else None,\n",
|
481 |
+
")"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": 48,
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [
|
489 |
+
{
|
490 |
+
"name": "stderr",
|
491 |
+
"output_type": "stream",
|
492 |
+
"text": [
|
493 |
+
"***** Running training *****\n",
|
494 |
+
" Num examples = 171\n",
|
495 |
+
" Num Epochs = 3\n",
|
496 |
+
" Instantaneous batch size per device = 8\n",
|
497 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 8\n",
|
498 |
+
" Gradient Accumulation steps = 1\n",
|
499 |
+
" Total optimization steps = 66\n"
|
500 |
+
]
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"data": {
|
504 |
+
"application/vnd.jupyter.widget-view+json": {
|
505 |
+
"model_id": "59ebc6f251bd42e4bd3474b574614d1f",
|
506 |
+
"version_major": 2,
|
507 |
+
"version_minor": 0
|
508 |
+
},
|
509 |
+
"text/plain": [
|
510 |
+
" 0%| | 0/66 [00:00<?, ?it/s]"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
"metadata": {},
|
514 |
+
"output_type": "display_data"
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"name": "stderr",
|
518 |
+
"output_type": "stream",
|
519 |
+
"text": [
|
520 |
+
"\n",
|
521 |
+
"\n",
|
522 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
523 |
+
"\n",
|
524 |
+
"\n",
|
525 |
+
"Saving model checkpoint to tmp_trainer\n",
|
526 |
+
"Configuration saved in tmp_trainer/config.json\n"
|
527 |
+
]
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"name": "stdout",
|
531 |
+
"output_type": "stream",
|
532 |
+
"text": [
|
533 |
+
"{'train_runtime': 2967.2818, 'train_samples_per_second': 0.173, 'train_steps_per_second': 0.022, 'train_loss': 4.249474265358665, 'epoch': 3.0}\n"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"name": "stderr",
|
538 |
+
"output_type": "stream",
|
539 |
+
"text": [
|
540 |
+
"Model weights saved in tmp_trainer/pytorch_model.bin\n",
|
541 |
+
"tokenizer config file saved in tmp_trainer/tokenizer_config.json\n",
|
542 |
+
"Special tokens file saved in tmp_trainer/special_tokens_map.json\n"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"name": "stdout",
|
547 |
+
"output_type": "stream",
|
548 |
+
"text": [
|
549 |
+
"***** train metrics *****\n",
|
550 |
+
" epoch = 3.0\n",
|
551 |
+
" train_loss = 4.2495\n",
|
552 |
+
" train_runtime = 0:49:27.28\n",
|
553 |
+
" train_samples = 171\n",
|
554 |
+
" train_samples_per_second = 0.173\n",
|
555 |
+
" train_steps_per_second = 0.022\n"
|
556 |
+
]
|
557 |
+
}
|
558 |
+
],
|
559 |
+
"source": [
|
560 |
+
"# Training\n",
|
561 |
+
"checkpoint = None\n",
|
562 |
+
"train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
|
563 |
+
"trainer.save_model() # Saves the tokenizer too for easy upload\n",
|
564 |
+
"\n",
|
565 |
+
"metrics = train_result.metrics\n",
|
566 |
+
"\n",
|
567 |
+
"max_train_samples = (len(train_dataset))\n",
|
568 |
+
"metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
|
569 |
+
"\n",
|
570 |
+
"trainer.log_metrics(\"train\", metrics)\n",
|
571 |
+
"trainer.save_metrics(\"train\", metrics)\n",
|
572 |
+
"trainer.save_state()"
|
573 |
+
]
|
574 |
+
}
|
575 |
+
],
|
576 |
+
"metadata": {
|
577 |
+
"kernelspec": {
|
578 |
+
"display_name": "Python 3.10.6 ('augmented_poetry')",
|
579 |
+
"language": "python",
|
580 |
+
"name": "python3"
|
581 |
+
},
|
582 |
+
"language_info": {
|
583 |
+
"codemirror_mode": {
|
584 |
+
"name": "ipython",
|
585 |
+
"version": 3
|
586 |
+
},
|
587 |
+
"file_extension": ".py",
|
588 |
+
"mimetype": "text/x-python",
|
589 |
+
"name": "python",
|
590 |
+
"nbconvert_exporter": "python",
|
591 |
+
"pygments_lexer": "ipython3",
|
592 |
+
"version": "3.8.13"
|
593 |
+
},
|
594 |
+
"orig_nbformat": 4,
|
595 |
+
"vscode": {
|
596 |
+
"interpreter": {
|
597 |
+
"hash": "00664817f4a09ab74dd392ee5a8d12e3606381c26df296db9ea5c334bb5d1b65"
|
598 |
+
}
|
599 |
+
}
|
600 |
+
},
|
601 |
+
"nbformat": 4,
|
602 |
+
"nbformat_minor": 2
|
603 |
+
}
|