curacel-demo-2 / app.py
mattraj's picture
demo buildout
9228783
raw
history blame
10.9 kB
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import os
import string
import functools
import re
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import spaces
model_id = "mattraj/curacel-transcription-1"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)
def resize_and_pad(image, target_dim):
# Calculate the aspect ratio
scale_factor = 1
aspect_ratio = image.width / image.height
if aspect_ratio > 1:
# Width is greater than height
new_width = int(target_dim * scale_factor)
new_height = int((target_dim / aspect_ratio) * scale_factor)
else:
# Height is greater than width
new_height = int(target_dim * scale_factor)
new_width = int(target_dim * aspect_ratio * scale_factor)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Create a new image with the target dimensions and a white background
new_image = Image.new("RGB", (target_dim, target_dim), (255, 255, 255))
new_image.paste(resized_image, ((target_dim - new_width) // 2, (target_dim - new_height) // 2))
return new_image
###### Transformers Inference
@spaces.GPU
def infer(
image: PIL.Image.Image,
text: str,
max_new_tokens: int
) -> str:
inputs = processor(text=text, images=resize_and_pad(image), return_tensors="pt").to(device)
with torch.inference_mode():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
return result[0][len(text):].lstrip("\n")
##### Parse segmentation output tokens into masks
##### Also returns bounding boxes with their labels
def parse_segmentation(input_image, input_text):
out = infer(input_image, input_text, max_new_tokens=100)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
######## Demo
INTRO_TEXT = """## Curacel Handwritten Arabic demo\n\n
Finetuned from: google/paligemma-3b-pt-448
Translation model demo at: https://prod.arabic-gpt.ai/
Prompts:
Translate the Arabic to English: {model output}
The following is a diagnosis in Arabic from a medical billing form we need to translate to English. The transcriber is not necessariily accurate so one or more characters or words may be wrong. Given what is written, what is the most likely diagnosis. Think step by step, and think about similar words or mispellings in Arabic. Give multiple arabic diagnoses along with the translation in English for each, then finally select the diagnosis that makes the most sense given what was transcribed and print the English translation as your most likely final translation. Transcribed text: {model output}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
chat_btn = gr.Button()
tokens = gr.Slider(
label="Max New Tokens",
info="Set to larger for longer generation.",
minimum=10,
maximum=100,
value=20,
step=10,
)
chat_inputs = [
image,
text_input,
tokens
]
chat_outputs = [
text_output
]
chat_btn.click(
fn=infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."],
["./examples/sign.jpg", "Transcribe the Arabic text."]]
gr.Markdown("")
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
'''
with gr.Tab("Segment/Detect"):
image = gr.Image(type="pil")
seg_input = gr.Text(label="Entities to Segment/Detect")
seg_btn = gr.Button("Submit")
annotated_image = gr.AnnotatedImage(label="Output")
examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."],
["./examples/sign.jpg", "Transcribe the Arabic text."]]
gr.Markdown(
"")
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=parse_segmentation,
inputs=seg_inputs,
outputs=seg_outputs,
)
'''
### Postprocessing Utils for Segmentation Tokens
### Segmentation tokens are passed to another VAE which decodes them to a mask
_MODEL_PATH = 'vae-oid.npz'
_SEGMENT_DETECT_RE = re.compile(
r'(.*?)' +
r'<loc(\d{4})>' * 4 + r'\s*' +
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
r'\s*([^;<>]+)? ?(?:; )?',
)
def _get_params(checkpoint):
"""Converts PyTorch checkpoint to Flax params."""
def transp(kernel):
return np.transpose(kernel, (2, 3, 1, 0))
def conv(name):
return {
'bias': checkpoint[name + '.bias'],
'kernel': transp(checkpoint[name + '.weight']),
}
def resblock(name):
return {
'Conv_0': conv(name + '.0'),
'Conv_1': conv(name + '.2'),
'Conv_2': conv(name + '.4'),
}
return {
'_embeddings': checkpoint['_vq_vae._embedding'],
'Conv_0': conv('decoder.0'),
'ResBlock_0': resblock('decoder.2.net'),
'ResBlock_1': resblock('decoder.3.net'),
'ConvTranspose_0': conv('decoder.4'),
'ConvTranspose_1': conv('decoder.6'),
'ConvTranspose_2': conv('decoder.8'),
'ConvTranspose_3': conv('decoder.10'),
'Conv_1': conv('decoder.12'),
}
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
batch_size, num_tokens = codebook_indices.shape
assert num_tokens == 16, codebook_indices.shape
unused_num_embeddings, embedding_dim = embeddings.shape
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
return encodings
@functools.cache
def _get_reconstruct_masks():
"""Reconstructs masks from codebook indices.
Returns:
A function that expects indices shaped `[B, 16]` of dtype int32, each
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
"""
class ResBlock(nn.Module):
features: int
@nn.compact
def __call__(self, x):
original_x = x
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
return x + original_x
class Decoder(nn.Module):
"""Upscales quantized vectors to mask."""
@nn.compact
def __call__(self, x):
num_res_blocks = 2
dim = 128
num_upsample_layers = 4
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
x = nn.relu(x)
for _ in range(num_res_blocks):
x = ResBlock(features=dim)(x)
for _ in range(num_upsample_layers):
x = nn.ConvTranspose(
features=dim,
kernel_size=(4, 4),
strides=(2, 2),
padding=2,
transpose_kernel=True,
)(x)
x = nn.relu(x)
dim //= 2
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
return x
def reconstruct_masks(codebook_indices):
quantized = _quantized_values_from_codebook_indices(
codebook_indices, params['_embeddings']
)
return Decoder().apply({'params': params}, quantized)
with open(_MODEL_PATH, 'rb') as f:
params = _get_params(dict(np.load(f)))
return jax.jit(reconstruct_masks, backend='cpu')
def extract_objs(text, width, height, unique_labels=False):
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
print("m", m)
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1 * height, x1 * width, y2 * height, x2 * width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
#########
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)