Matyáš Boháček
Initial commit
ccdf9bb
raw
history blame
8.15 kB
import logging
import pandas as pd
HAND_IDENTIFIERS = [
"wrist",
"indexTip",
"indexDIP",
"indexPIP",
"indexMCP",
"middleTip",
"middleDIP",
"middlePIP",
"middleMCP",
"ringTip",
"ringDIP",
"ringPIP",
"ringMCP",
"littleTip",
"littleDIP",
"littlePIP",
"littleMCP",
"thumbTip",
"thumbIP",
"thumbMP",
"thumbCMC"
]
def normalize_hands_full(df: pd.DataFrame) -> pd.DataFrame:
"""
Normalizes the hands position data using the Bohacek-normalization algorithm.
:param df: pd.DataFrame to be normalized
:return: pd.DataFrame with normalized values for hand pose
"""
# TODO: Fix division by zero
df.columns = [item.replace("_left_", "_0_").replace("_right_", "_1_") for item in list(df.columns)]
normalized_df = pd.DataFrame(columns=df.columns)
hand_landmarks = {"X": {0: [], 1: []}, "Y": {0: [], 1: []}}
# Determine how many hands are present in the dataset
range_hand_size = 1
if "wrist_1_X" in df.columns:
range_hand_size = 2
# Construct the relevant identifiers
for identifier in HAND_IDENTIFIERS:
for hand_index in range(range_hand_size):
hand_landmarks["X"][hand_index].append(identifier + "_" + str(hand_index) + "_X")
hand_landmarks["Y"][hand_index].append(identifier + "_" + str(hand_index) + "_Y")
# Iterate over all of the records in the dataset
for index, row in df.iterrows():
# Treat each hand individually
for hand_index in range(range_hand_size):
sequence_size = len(row["wrist_" + str(hand_index) + "_X"])
# Treat each element of the sequence (analyzed frame) individually
for sequence_index in range(sequence_size):
# Retrieve all of the X and Y values of the current frame
landmarks_x_values = [row[key][sequence_index] for key in hand_landmarks["X"][hand_index] if row[key][sequence_index] != 0]
landmarks_y_values = [row[key][sequence_index] for key in hand_landmarks["Y"][hand_index] if row[key][sequence_index] != 0]
# Prevent from even starting the analysis if some necessary elements are not present
if not landmarks_x_values or not landmarks_y_values:
logging.warning(
" HAND LANDMARKS: One frame could not be normalized as there is no data present. Record: " + str(index) +
", Frame: " + str(sequence_index))
continue
# Calculate the deltas
width, height = max(landmarks_x_values) - min(landmarks_x_values), max(landmarks_y_values) - min(
landmarks_y_values)
if width > height:
delta_x = 0.1 * width
delta_y = delta_x + ((width - height) / 2)
else:
delta_y = 0.1 * height
delta_x = delta_y + ((height - width) / 2)
# Set the starting and ending point of the normalization bounding box
starting_point = (min(landmarks_x_values) - delta_x, min(landmarks_y_values) - delta_y)
ending_point = (max(landmarks_x_values) + delta_x, max(landmarks_y_values) + delta_y)
# Normalize individual landmarks and save the results
for identifier in HAND_IDENTIFIERS:
key = identifier + "_" + str(hand_index) + "_"
# Prevent from trying to normalize incorrectly captured points
if row[key + "X"][sequence_index] == 0 or (ending_point[0] - starting_point[0]) == 0 or (starting_point[1] - ending_point[1]) == 0:
continue
normalized_x = (row[key + "X"][sequence_index] - starting_point[0]) / (ending_point[0] -
starting_point[0])
normalized_y = (row[key + "Y"][sequence_index] - ending_point[1]) / (starting_point[1] -
ending_point[1])
row[key + "X"][sequence_index] = normalized_x
row[key + "Y"][sequence_index] = normalized_y
normalized_df = normalized_df.append(row, ignore_index=True)
return normalized_df
def normalize_single_dict(row: dict):
"""
Normalizes the skeletal data for a given sequence of frames with signer's hand pose data. The normalization follows
the definition from our paper.
:param row: Dictionary containing key-value pairs with joint identifiers and corresponding lists (sequences) of
that particular joints coordinates
:return: Dictionary with normalized skeletal data (following the same schema as input data)
"""
hand_landmarks = {0: [], 1: []}
# Determine how many hands are present in the dataset
range_hand_size = 1
if "wrist_1" in row.keys():
range_hand_size = 2
# Construct the relevant identifiers
for identifier in HAND_IDENTIFIERS:
for hand_index in range(range_hand_size):
hand_landmarks[hand_index].append(identifier + "_" + str(hand_index))
# Treat each hand individually
for hand_index in range(range_hand_size):
sequence_size = len(row["wrist_" + str(hand_index)])
# Treat each element of the sequence (analyzed frame) individually
for sequence_index in range(sequence_size):
# Retrieve all of the X and Y values of the current frame
landmarks_x_values = [row[key][sequence_index][0] for key in hand_landmarks[hand_index] if
row[key][sequence_index][0] != 0]
landmarks_y_values = [row[key][sequence_index][1] for key in hand_landmarks[hand_index] if
row[key][sequence_index][1] != 0]
# Prevent from even starting the analysis if some necessary elements are not present
if not landmarks_x_values or not landmarks_y_values:
continue
# Calculate the deltas
width, height = max(landmarks_x_values) - min(landmarks_x_values), max(landmarks_y_values) - min(
landmarks_y_values)
if width > height:
delta_x = 0.1 * width
delta_y = delta_x + ((width - height) / 2)
else:
delta_y = 0.1 * height
delta_x = delta_y + ((height - width) / 2)
# Set the starting and ending point of the normalization bounding box
starting_point = [min(landmarks_x_values) - delta_x, min(landmarks_y_values) - delta_y]
ending_point = [max(landmarks_x_values) + delta_x, max(landmarks_y_values) + delta_y]
# Ensure that all of the bounding-box-defining coordinates are not out of the picture
if starting_point[0] < 0: starting_point[0] = 0
if starting_point[1] > 1: starting_point[1] = 1
if ending_point[0] < 0: ending_point[0] = 0
if ending_point[1] > 1: ending_point[1] = 1
# Normalize individual landmarks and save the results
for identifier in HAND_IDENTIFIERS:
key = identifier + "_" + str(hand_index)
# Prevent from trying to normalize incorrectly captured points
if row[key][sequence_index][0] == 0 or (ending_point[0] - starting_point[0]) == 0 or (
starting_point[1] - ending_point[1]) == 0:
continue
normalized_x = (row[key][sequence_index][0] - starting_point[0]) / (ending_point[0] - starting_point[0])
normalized_y = (row[key][sequence_index][1] - starting_point[1]) / (ending_point[1] - starting_point[1])
row[key][sequence_index] = list(row[key][sequence_index])
row[key][sequence_index][0] = normalized_x
row[key][sequence_index][1] = normalized_y
return row
if __name__ == "__main__":
pass