import copy import os os.system("pip uninstall -y gradio") os.system("pip install gradio==3.16.0") import torch # import torch.nn.modules.linear as linear linear._LinearWithBias = linear.NonDynamicallyQuantizableLinear # import numpy as np import gradio as gr from spoter_mod.skeleton_extractor import obtain_pose_data from spoter_mod.normalization.body_normalization import normalize_single_dict as normalize_single_body_dict, BODY_IDENTIFIERS from spoter_mod.normalization.hand_normalization import normalize_single_dict as normalize_single_hand_dict, HAND_IDENTIFIERS model = torch.load("spoter-checkpoint.pth", map_location=torch.device('cpu')) model.train(False) HAND_IDENTIFIERS = [id + "_Left" for id in HAND_IDENTIFIERS] + [id + "_Right" for id in HAND_IDENTIFIERS] GLOSS = ['book', 'drink', 'computer', 'before', 'chair', 'go', 'clothes', 'who', 'candy', 'cousin', 'deaf', 'fine', 'help', 'no', 'thin', 'walk', 'year', 'yes', 'all', 'black', 'cool', 'finish', 'hot', 'like', 'many', 'mother', 'now', 'orange', 'table', 'thanksgiving', 'what', 'woman', 'bed', 'blue', 'bowling', 'can', 'dog', 'family', 'fish', 'graduate', 'hat', 'hearing', 'kiss', 'language', 'later', 'man', 'shirt', 'study', 'tall', 'white', 'wrong', 'accident', 'apple', 'bird', 'change', 'color', 'corn', 'cow', 'dance', 'dark', 'doctor', 'eat', 'enjoy', 'forget', 'give', 'last', 'meet', 'pink', 'pizza', 'play', 'school', 'secretary', 'short', 'time', 'want', 'work', 'africa', 'basketball', 'birthday', 'brown', 'but', 'cheat', 'city', 'cook', 'decide', 'full', 'how', 'jacket', 'letter', 'medicine', 'need', 'paint', 'paper', 'pull', 'purple', 'right', 'same', 'son', 'tell', 'thursday'] device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda") def tensor_to_dictionary(landmarks_tensor: torch.Tensor) -> dict: data_array = landmarks_tensor.numpy() output = {} for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS): output[identifier] = data_array[:, landmark_index] return output def dictionary_to_tensor(landmarks_dict: dict) -> torch.Tensor: output = np.empty(shape=(len(landmarks_dict["leftEar"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2)) for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS): output[:, landmark_index, 0] = [frame[0] for frame in landmarks_dict[identifier]] output[:, landmark_index, 1] = [frame[1] for frame in landmarks_dict[identifier]] return torch.from_numpy(output) def greet(label, video0, video1): if label == "Webcam": video = video0 elif label == "Video": video = video1 elif label == "X": return {"A": 0.8, "B": 0.1, "C": 0.1} else: return {} data = obtain_pose_data(video) depth_map = np.empty(shape=(len(data.data_hub["nose_X"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2)) for index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS): depth_map[:, index, 0] = data.data_hub[identifier + "_X"] depth_map[:, index, 1] = data.data_hub[identifier + "_Y"] depth_map = torch.from_numpy(np.copy(depth_map)) depth_map = tensor_to_dictionary(depth_map) keys = copy.copy(list(depth_map.keys())) for key in keys: data = depth_map[key] del depth_map[key] depth_map[key.replace("_Left", "_0").replace("_Right", "_1")] = data depth_map = normalize_single_body_dict(depth_map) depth_map = normalize_single_hand_dict(depth_map) keys = copy.copy(list(depth_map.keys())) for key in keys: data = depth_map[key] del depth_map[key] depth_map[key.replace("_0", "_Left").replace("_1", "_Right")] = data depth_map = dictionary_to_tensor(depth_map) depth_map = depth_map - 0.5 inputs = depth_map.squeeze(0).to(device) outputs = model(inputs).expand(1, -1, -1) results = torch.nn.functional.softmax(outputs, dim=2).detach().numpy()[0, 0] results = {GLOSS[i]: float(results[i]) for i in range(100)} return results label = gr.outputs.Label(num_top_classes=3, label="Top class probabilities") demo = gr.Interface(fn=greet, inputs=[gr.Dropdown(["Webcam", "Video"], label="Input source", type="value"), gr.Video(source="webcam", label="Webcam recording", type="mp4"), gr.Video(source="upload", label="Video upload", type="mp4")], outputs=label, title="", description="""