File size: 10,444 Bytes
1a0cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
Source and credits: https://github.com/ZubinGou/math-evaluation-harness/blob/main/python_executor.py
This logic is largely copied from the Hendrycks' MATH release (math_equivalence), and borrowed from:
- https://github.com/microsoft/ProphetNet/tree/master/CRITIC
- https://github.com/openai/prm800k
- https://github.com/microsoft/ToRA/blob/main/src/eval/grader.py
- https://github.com/deepseek-ai/DeepSeek-Math/blob/main/evaluation/eval/eval_utils.py
"""
import re
import regex
import multiprocessing
from math import isclose
from typing import Union

from sympy import simplify, N
from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.latex import parse_latex
from latex2sympy2 import latex2sympy


def parse_digits(num):
    num = regex.sub(',', '', str(num))
    try:
        return float(num)
    except:
        if num.endswith('%'):
            num = num[:-1]
            if num.endswith('\\'):
                num = num[:-1]
            try:
                return float(num) / 100
            except:
                pass
    return None

def is_digit(num):
    # paired with parse_digits
    return parse_digits(num) is not None


def str_to_pmatrix(input_str):
    input_str = input_str.strip()
    matrix_str = re.findall(r'\{.*,.*\}', input_str)
    pmatrix_list = []

    for m in matrix_str:
        m = m.strip('{}')
        pmatrix = r'\begin{pmatrix}' + m.replace(',', '\\') + r'\end{pmatrix}'
        pmatrix_list.append(pmatrix)

    return ', '.join(pmatrix_list)


def math_equal(prediction: Union[bool, float, str],
                reference: Union[float, str],
                include_percentage: bool = True,
                is_close: bool = True,
                timeout: bool = False,
                ) -> bool:
    """
    Exact match of math if and only if:
    1. numerical equal: both can convert to float and are equal
    2. symbolic equal: both can convert to sympy expression and are equal
    """
    # print("Judge:", prediction, reference)
    if str(prediction) == str(reference):
        return True

    try: # 1. numerical equal
        if is_digit(prediction) and is_digit(reference):
            prediction = parse_digits(prediction)
            reference = parse_digits(reference)
            # number questions
            if include_percentage:
                gt_result = [reference / 100, reference, reference * 100]
            else:
                gt_result = [reference]
            for item in gt_result:
                try:
                    if is_close:
                        if numeric_equal(prediction, item):
                            return True
                    else:
                        if item == prediction:
                            return True
                except Exception:
                    continue
            return False
    except:
        pass

    if not prediction and prediction not in [0, False]:
        return False
    # print("try math_eval")

    # 2. symbolic equal
    reference = str(reference).strip()
    prediction = str(prediction).strip()

    ## pmatrix (amps)
    if "pmatrix" in prediction and not 'pmatrix' in reference:
        reference = str_to_pmatrix(reference)

    ## deal with [], (), {}
    pred_str, ref_str = prediction, reference
    if (prediction.startswith("[") and prediction.endswith("]") and not reference.startswith("(")) or \
        (prediction.startswith("(") and prediction.endswith(")") and not reference.startswith("[")):
        pred_str = pred_str.strip("[]()")
        ref_str = ref_str.strip("[]()")
    for s in ['{', "}", "(", ")"]:
        ref_str = ref_str.replace(s, "")
        pred_str = pred_str.replace(s, "")
    if pred_str.lower() == ref_str.lower():
        return True

    ## [a, b] vs. [c, d], return a==c and b==d
    if regex.match(r'(\(|\[).+(\)|\])', prediction) is not None and regex.match(r'(\(|\[).+(\)|\])', reference) is not None:
        pred_parts = prediction[1:-1].split(",")
        ref_parts = reference[1:-1].split(",")
        if len(pred_parts) == len(ref_parts):
            if all([math_equal(pred_parts[i], ref_parts[i], include_percentage, is_close) for i in range(len(pred_parts))]):
                return True
    if (prediction.startswith("\\begin{pmatrix}") or prediction.startswith("\\begin{bmatrix}")) and (prediction.endswith("\\end{pmatrix}") or prediction.endswith("\\end{bmatrix}")) and \
        (reference.startswith("\\begin{pmatrix}") or reference.startswith("\\begin{bmatrix}")) and (reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")):
        pred_lines = [line.strip() for line in prediction[len("\\begin{pmatrix}"): -len("\\end{pmatrix}")].split("\\\\") if line.strip()]
        ref_lines = [line.strip() for line in reference[len("\\begin{pmatrix}"): -len("\\end{pmatrix}")].split("\\\\") if line.strip()]
        matched = True
        if len(pred_lines) == len(ref_lines):
            for pred_line, ref_line in zip(pred_lines, ref_lines):
                pred_parts = pred_line.split("&")
                ref_parts = ref_line.split("&")
                if len(pred_parts) == len(ref_parts):
                    if not all([math_equal(pred_parts[i], ref_parts[i], include_percentage, is_close) for i in range(len(pred_parts))]):
                        matched = False
                        break
                else:
                    matched = False
                if not matched:
                    break
        else:
            matched = False
        if matched:
            return True

    if prediction.count('=') == 1 and reference.count('=') == 1:
        pred = prediction.split('=')
        pred = f"{pred[0].strip()} - ({pred[1].strip()})"
        ref = reference.split('=')
        ref = f"{ref[0].strip()} - ({ref[1].strip()})"
        if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
            return True
    elif prediction.count('=') == 1 and len(prediction.split('=')[0].strip()) <= 2 and '=' not in reference:
        if math_equal(prediction.split('=')[1], reference, include_percentage, is_close):
            return True
    elif reference.count('=') == 1 and len(reference.split('=')[0].strip()) <= 2 and '=' not in prediction:
        if math_equal(prediction, reference.split('=')[1], include_percentage, is_close):
            return True

    # print("try final")
    # symbolic equal with sympy
    if timeout:
        if call_with_timeout(symbolic_equal_process, prediction, reference):
            return True
    else:
        if symbolic_equal(prediction, reference):
            return True

    return False


def math_equal_process(param):
    return math_equal(param[-2], param[-1])


def numeric_equal(prediction: float, reference: float):
    # Note that relative tolerance has significant impact 
    # on the result of the synthesized gsm_hard dataset
    # if reference.is_integer():
    #     return isclose(reference, round(prediction), abs_tol=1e-4)
    # else:
        # prediction = round(prediction, len(str(reference).split(".")[-1]))
    return isclose(reference, prediction, rel_tol=1e-4)


def symbolic_equal(a, b):
    def _parse(s):
        for f in [parse_latex, parse_expr, latex2sympy]:
            try:
                return f(s.replace("\\\\", "\\"))
            except:
                try:
                    return f(s)
                except:
                    pass
        return s
    a = _parse(a)
    b = _parse(b)

    # direct equal
    try:
        if str(a) == str(b) or a == b:
            return True
    except:
        pass

    # print("try simplify")
    # simplify equal
    try:
        if a.equals(b) or simplify(a-b) == 0:
            return True
    except:
        pass

    # print("try equation")
    # equation equal
    try:
        if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
            return True
    except:
        pass

    try:
        if numeric_equal(float(N(a)), float(N(b))):
            return True
    except:
       pass

    # matrix
    try:
        # if a and b are matrix
        if a.shape == b.shape:
            _a = a.applyfunc(lambda x: round(x, 3))
            _b = b.applyfunc(lambda x: round(x, 3))
            if _a.equals(_b):
                return True
    except:
        pass

    return False


def symbolic_equal_process(a, b, output_queue):
    result = symbolic_equal(a, b)
    output_queue.put(result)


def call_with_timeout(func, *args, timeout=1, **kwargs):
    output_queue = multiprocessing.Queue()
    process_args = args + (output_queue,)
    process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
    process.start()
    process.join(timeout)

    if process.is_alive():
        process.terminate()
        process.join()
        return False

    return output_queue.get()


def _test_math_equal():
    # print(math_equal("0.0833333333333333", "\\frac{1}{12}"))
    # print(math_equal("(1,4.5)", "(1,\\frac{9}{2})"))
    # print(math_equal("\\frac{x}{7}+\\frac{2}{7}", "\\frac{x+2}{7}", timeout=True))
    # print(math_equal("\\sec^2(y)", "\\tan^2(y)+1", timeout=True))
    # print(math_equal("\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\end{pmatrix}", "(\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\\\\\end{pmatrix})", timeout=True))

    # pred = '\\begin{pmatrix}\\frac{1}{3x^{2/3}}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\end{pmatrix}'
    # gt = '(\\begin{pmatrix}\\frac{1}{3\\sqrt[3]{x}^2}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\\\\\end{pmatrix})'

    # pred= '-\\frac{8x^2}{9(x^2-2)^{5/3}}+\\frac{2}{3(x^2-2)^{2/3}}'
    # gt= '-\\frac{2(x^2+6)}{9(x^2-2)\\sqrt[3]{x^2-2}^2}'

    # pred =  '-34x-45y+20z-100=0'
    # gt = '34x+45y-20z+100=0'

    # pred = '\\frac{100}{3}'
    # gt = '33.3'

    # pred = '\\begin{pmatrix}0.290243531202435\\\\0.196008371385084\\\\-0.186381278538813\\end{pmatrix}'
    # gt = '(\\begin{pmatrix}0.29\\\\0.196\\\\-0.186\\\\\\end{pmatrix})'

    # pred = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{2\\sqrt{33}+15}'
    # gt = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{15+2\\sqrt{33}}'

    # pred = '(+5)(b+2)'
    # gt = '(a+5)(b+2)'

    # pred = '\\frac{1+\\sqrt{5}}{2}'
    # gt = '2'

    # pred = '\\frac{34}{16}+\\frac{\\sqrt{1358}}{16}', gt = '4'
    # pred = '1', gt = '1\\\\sqrt{19}'

    pred = '(0.6,2.6667]'
    gt = '(\\frac{3}{5},\\frac{8}{3}]'

    print(math_equal(pred, gt, timeout=True))


if __name__ == "__main__":
    _test_math_equal()