Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import multiprocessing | |
import os | |
import gradio as gr | |
from swiftsage.agents import SwiftSage | |
from swiftsage.utils.commons import PromptTemplate, api_configs, setup_logging | |
from pkg_resources import resource_filename | |
#ENGINE = "Together" | |
#SWIFT_MODEL_ID = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" | |
#FEEDBACK_MODEL_ID = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" | |
#SAGE_MODEL_ID = "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo" | |
# ENGINE = "Groq" | |
# SWIFT_MODEL_ID = "llama-3.1-8b-instant" | |
# FEEDBACK_MODEL_ID = "llama-3.1-8b-instant" | |
# SAGE_MODEL_ID = "llama-3.1-70b-versatile" | |
ENGINE = "SambaNova" | |
SWIFT_MODEL_ID = "Meta-Llama-3.1-8B-Instruct" | |
FEEDBACK_MODEL_ID = "Meta-Llama-3.1-70B-Instruct" | |
SAGE_MODEL_ID = "Meta-Llama-3.1-405B-Instruct" | |
def solve_problem(problem, max_iterations, reward_threshold, swift_model_id, sage_model_id, feedback_model_id, use_retrieval, start_with_sage, swift_temperature, swift_top_p, sage_temperature, sage_top_p, feedback_temperature, feedback_top_p): | |
global ENGINE | |
# Configuration for each LLM | |
max_iterations = int(max_iterations) | |
reward_threshold = int(reward_threshold) | |
swift_config = { | |
"model_id": swift_model_id, | |
"api_config": api_configs[ENGINE], | |
"temperature": float(swift_temperature), | |
"top_p": float(swift_top_p), | |
"max_tokens": 8192, | |
} | |
feedback_config = { | |
"model_id": feedback_model_id, | |
"api_config": api_configs[ENGINE], | |
"temperature": float(feedback_temperature), | |
"top_p": float(feedback_top_p), | |
"max_tokens": 8192, | |
} | |
sage_config = { | |
"model_id": sage_model_id, | |
"api_config": api_configs[ENGINE], | |
"temperature": float(sage_temperature), | |
"top_p": float(sage_top_p), | |
"max_tokens": 8192, | |
} | |
# specify the path to the prompt templates | |
# prompt_template_dir = './swiftsage/prompt_templates' | |
# prompt_template_dir = resource_filename('swiftsage', 'prompt_templates') | |
# Try multiple locations for the prompt templates | |
possible_paths = [ | |
resource_filename('swiftsage', 'prompt_templates'), | |
os.path.join(os.path.dirname(__file__), '..', 'swiftsage', 'prompt_templates'), | |
os.path.join(os.path.dirname(__file__), 'swiftsage', 'prompt_templates'), | |
'/app/swiftsage/prompt_templates', # For Docker environments | |
] | |
prompt_template_dir = None | |
for path in possible_paths: | |
if os.path.exists(path): | |
prompt_template_dir = path | |
break | |
dataset = [] | |
embeddings = [] # TODO: for retrieval augmentation (not implemented yet now) | |
s2 = SwiftSage( | |
dataset, | |
embeddings, | |
prompt_template_dir, | |
swift_config, | |
sage_config, | |
feedback_config, | |
use_retrieval=use_retrieval, | |
start_with_sage=start_with_sage, | |
) | |
reasoning, solution, messages = s2.solve(problem, max_iterations, reward_threshold) | |
reasoning = reasoning.replace("The generated code is:", "\n---\nThe generated code is:").strip() | |
solution = solution.replace("Answer (from running the code):\n ", " ").strip() | |
# generate HTML for the log messages and display them with wrap and a scroll bar and a max height in the code block with log style | |
log_messages = "<pre style='white-space: pre-wrap; max-height: 500px; overflow-y: scroll;'><code class='log'>" + "\n".join(messages) + "</code></pre>" | |
return reasoning, solution, log_messages | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
# gr.Markdown("## SwiftSage: A Multi-Agent Framework for Reasoning") | |
# use the html and center the title | |
gr.HTML("<h1 style='text-align: center;'>๐ฆ Bank Failure Predictor</h1>") | |
gr.HTML("<span>This tool predicts the likelihood of bank failure based on balance sheet data.</span>") | |
with gr.Row(): | |
swift_model_id = gr.Textbox(label="๐ Swift Model ID", value=SWIFT_MODEL_ID) | |
feedback_model_id = gr.Textbox(label="๐ค Feedback Model ID", value=FEEDBACK_MODEL_ID) | |
sage_model_id = gr.Textbox(label="๐ Sage Model ID", value=SAGE_MODEL_ID) | |
# the following two should have a smaller width | |
with gr.Accordion(label="โ๏ธ Advanced Options", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
max_iterations = gr.Textbox(label="Max Iterations", value="5") | |
reward_threshold = gr.Textbox(label="feedback Threshold", value="8") | |
# TODO: add top-p and temperature for each module for controlling | |
with gr.Column(): | |
top_p_swift = gr.Textbox(label="Top-p for Swift", value="0.9") | |
temperature_swift = gr.Textbox(label="Temperature for Swift", value="0.5") | |
with gr.Column(): | |
top_p_sage = gr.Textbox(label="Top-p for Sage", value="0.9") | |
temperature_sage = gr.Textbox(label="Temperature for Sage", value="0.5") | |
with gr.Column(): | |
top_p_feedback = gr.Textbox(label="Top-p for Feedback", value="0.9") | |
temperature_feedback = gr.Textbox(label="Temperature for Feedback", value="0.5") | |
use_retrieval = gr.Checkbox(label="Use Retrieval Augmentation", value=False, visible=False) | |
start_with_sage = gr.Checkbox(label="Start with Sage", value=False, visible=False) | |
problem = gr.Textbox(label="Input balance sheet data or parameters", value="Enter the bank's financial data here...", lines=5) | |
solve_button = gr.Button("๐ฎ Predict Failure Chance") | |
reasoning_output = gr.Textbox(label="Prediction steps with Code", interactive=False) | |
solution_output = gr.Textbox(label="Prediction Result", interactive=False) | |
# add a log display for showing the log messages | |
with gr.Accordion(label="๐ Log Messages", open=False): | |
log_output = gr.HTML("<p>No log messages yet.</p>") | |
solve_button.click( | |
solve_problem, | |
inputs=[problem, max_iterations, reward_threshold, swift_model_id, sage_model_id, feedback_model_id, use_retrieval, start_with_sage, temperature_swift, top_p_swift, temperature_sage, top_p_sage, temperature_feedback, top_p_feedback], | |
outputs=[reasoning_output, solution_output, log_output], | |
) | |
if __name__ == '__main__': | |
# make logs dir if it does not exist | |
if not os.path.exists('logs'): | |
os.makedirs('logs') | |
multiprocessing.set_start_method('spawn') | |
demo.launch(share=True, show_api=True) |