Spaces:
Sleeping
Sleeping
maxinethegreat
commited on
Commit
•
e3ed1f8
1
Parent(s):
95d0890
attempt to use emotion detection model
Browse files
app.py
CHANGED
@@ -1,13 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface = gr.Interface(
|
8 |
-
fn =
|
9 |
-
inputs=
|
10 |
-
outputs=
|
|
|
11 |
title = "Mood Detective",
|
12 |
description = "real-time emotion detection"
|
13 |
)
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import tensorflow as tf
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
def greet(name):
|
9 |
return "Hello " + name + "!!"
|
10 |
|
11 |
|
12 |
+
|
13 |
+
# Load the saved model
|
14 |
+
model = tf.keras.models.load_model('model/cnn_9_layer_model.h5')
|
15 |
+
|
16 |
+
# Define the face cascade and emotions
|
17 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
18 |
+
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
19 |
+
|
20 |
+
# Define the predict_emotion function
|
21 |
+
def predict_emotion(frame):
|
22 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
23 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
24 |
+
for (x, y, w, h) in faces:
|
25 |
+
face = gray[y:y+h, x:x+w]
|
26 |
+
face = cv2.resize(face, (48, 48))
|
27 |
+
face = np.expand_dims(face, axis=-1)
|
28 |
+
face = np.expand_dims(face, axis=0)
|
29 |
+
prediction = model.predict(face)
|
30 |
+
emotion = emotions[np.argmax(prediction)]
|
31 |
+
cv2.putText(frame, emotion, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
32 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
33 |
+
return frame
|
34 |
+
|
35 |
+
# Start the video capture and emotion detection
|
36 |
+
# cap = cv2.VideoCapture(0)
|
37 |
+
# while True:
|
38 |
+
# ret, frame = cap.read()
|
39 |
+
# if ret:
|
40 |
+
# frame = predict_emotion(frame)
|
41 |
+
# cv2.imshow('Live Facial Emotion Detection', frame)
|
42 |
+
# if cv2.waitKey(1) == ord('q'):
|
43 |
+
# break
|
44 |
+
# cap.release()
|
45 |
+
# cv2.destroyAllWindows()
|
46 |
+
|
47 |
+
|
48 |
+
image = gr.inputs.Image(source = "webcam", shape=(50,50) )
|
49 |
+
label = gr.outputs.Label(num_top_classes=7)
|
50 |
+
|
51 |
+
|
52 |
iface = gr.Interface(
|
53 |
+
fn = predict_emotion,
|
54 |
+
inputs=image,
|
55 |
+
outputs=label,
|
56 |
+
interpretation = "default",
|
57 |
title = "Mood Detective",
|
58 |
description = "real-time emotion detection"
|
59 |
)
|