Spaces:
Runtime error
Runtime error
from models import SynthesizerTrn | |
from vits_pinyin import VITS_PinYin | |
from text import cleaned_text_to_sequence | |
from text.symbols import symbols | |
import gradio as gr | |
import utils | |
import torch | |
import argparse | |
import os | |
import re | |
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
limitation = os.getenv("SYSTEM") == "spaces" | |
def create_calback(net_g: SynthesizerTrn, tts_front: VITS_PinYin): | |
def tts_calback(text, dur_scale): | |
if limitation: | |
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) | |
max_len = 150 | |
if text_len > max_len: | |
return "Error: Text is too long", None | |
phonemes, char_embeds = tts_front.chinese_to_phonemes(text) | |
input_ids = cleaned_text_to_sequence(phonemes) | |
with torch.no_grad(): | |
x_tst = torch.LongTensor(input_ids).unsqueeze(0).to(device) | |
x_tst_lengths = torch.LongTensor([len(input_ids)]).to(device) | |
x_tst_prosody = torch.FloatTensor( | |
char_embeds).unsqueeze(0).to(device) | |
audio = net_g.infer(x_tst, x_tst_lengths, x_tst_prosody, noise_scale=0.5, | |
length_scale=dur_scale)[0][0, 0].data.cpu().float().numpy() | |
del x_tst, x_tst_lengths, x_tst_prosody | |
return "Success", (16000, audio) | |
return tts_calback | |
example = [['天空呈现的透心的蓝,像极了当年。总在这样的时候,透过窗棂,心,在天空里无尽的游弋!柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。', 1], | |
['风的影子翻阅过淡蓝色的信笺,柔和的文字浅浅地漫过我安静的眸,一如几朵悠闲的云儿,忽而氤氲成汽,忽而修饰成花,铅华洗尽后的透彻和靓丽,爽爽朗朗,轻轻盈盈', 1], | |
['时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。', 1],] | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", | |
default=False, help="share gradio app") | |
args = parser.parse_args() | |
device = torch.device("cpu") | |
# pinyin | |
tts_front = VITS_PinYin("./bert", device) | |
# config | |
hps = utils.get_hparams_from_file("./configs/bert_vits.json") | |
# model | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
model_path = "vits_bert_model.pth" | |
utils.load_model(model_path, net_g) | |
net_g.eval() | |
net_g.to(device) | |
tts_calback = create_calback(net_g, tts_front) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft\n\n" | |
"code : github.com/PlayVoice/vits_chinese\n\n" | |
"1, Hidden prosody embedding from BERT,get natural pauses in grammar\n\n" | |
"2, Infer loss from NaturalSpeech,get less sound error\n\n" | |
"3, Framework of VITS,get high audio quality\n\n" | |
"<video id='video' controls='' preload='yes'>\n\n" | |
"<source id='mp4' src='https://user-images.githubusercontent.com/16432329/220678182-4775dec8-9229-4578-870f-2eebc3a5d660.mp4' type='video/mp4'>\n\n" | |
"</videos>\n\n" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("TTS"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox = gr.TextArea(label="Text", | |
placeholder="Type your sentence here (Maximum 150 words)", | |
value="中文语音合成", elem_id=f"tts-input") | |
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, | |
label='速度 Speed') | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message") | |
audio_output = gr.Audio( | |
label="Output Audio", elem_id="tts-audio") | |
btn = gr.Button("Generate!") | |
btn.click(tts_calback, | |
inputs=[textbox, duration_slider], | |
outputs=[text_output, audio_output]) | |
gr.Examples( | |
examples=example, | |
inputs=[textbox, duration_slider], | |
outputs=[text_output, audio_output], | |
fn=tts_calback | |
) | |
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) | |