File size: 5,684 Bytes
f079597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b04b2b6
 
 
 
f079597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import cv2
import numpy as np
import onnxruntime as ort
import torch
import copy

from ultralytics.utils import ROOT, yaml_load
from ultralytics.utils.checks import check_requirements, check_yaml


class Yolov8onnx:

    def __init__(self, 
                 onnx_model,
                 input_width,
                 input_height, 
                 confidence_thres, 
                 iou_thres, 
                 device='cpu'):
        """
        Initializes an instance of the Yolov8 class.

        Args:
            onnx_model: Path to the ONNX model.
            confidence_thres: Confidence threshold for filtering detections.
            iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
        """
        self.onnx_model = onnx_model
        self.confidence_thres = confidence_thres
        self.iou_thres = iou_thres
        self.input_width = input_width
        self.input_height = input_height
        #if device == 'cpu':
        #    providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        #else:
        providers = ['CPUExecutionProvider']

        self.onnx_session = ort.InferenceSession(
            onnx_model,
            providers=providers
        )

        self.input_name = self.onnx_session.get_inputs()[0].name
        self.output_name = self.onnx_session.get_outputs()[0].name


    def preprocess(self, input_image):
        """
        Preprocesses the input image before performing inference.

        Returns:
            image_data: Preprocessed image data ready for inference.
        """
        # Read the input image using OpenCV
        self.img = input_image

        # Get the height and width of the input image
        self.img_height, self.img_width = self.img.shape[:2]

        # Convert the image color space from BGR to RGB
        img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)

        # Resize the image to match the input shape
        img = cv2.resize(img, (self.input_width, self.input_height))

        # Normalize the image data by dividing it by 255.0
        image_data = np.array(img) / 255.0

        # Transpose the image to have the channel dimension as the first dimension
        image_data = np.transpose(image_data, (2, 0, 1))  # Channel first

        # Expand the dimensions of the image data to match the expected input shape
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        # Return the preprocessed image data
        return image_data

    def postprocess(self, output):
        """
        Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
        """

        # Transpose and squeeze the output to match the expected shape
        outputs = np.transpose(np.squeeze(output[0]))

        # Get the number of rows in the outputs array
        rows = outputs.shape[0]
        # Lists to store the bounding boxes, scores, and class IDs of the detections
        boxes = []
        scores = []
        class_ids = []

        # Calculate the scaling factors for the bounding box coordinates
        x_factor = self.img_width / self.input_width
        y_factor = self.img_height / self.input_height
        # Iterate over each row in the outputs array
        for i in range(rows):
            # Extract the class scores from the current row
            classes_scores = outputs[i][4:]

            # Find the maximum score among the class scores
            max_score = np.amax(classes_scores)
            # If the maximum score is above the confidence threshold
            if max_score >= self.confidence_thres:
                # Get the class ID with the highest score
                class_id = np.argmax(classes_scores)

                # Extract the bounding box coordinates from the current row
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

                # Calculate the scaled coordinates of the bounding box
                left = int((x - w / 2) * x_factor)
                top = int((y - h / 2) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)

                # Add the class ID, score, and box coordinates to the respective lists
                class_ids.append(int(class_id))
                scores.append(max_score)
                boxes.append([left, top, left+width, top+height])
        # Apply non-maximum suppression to filter out overlapping bounding boxes
        indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
        output_boxes = [boxes[i] for i in indices]
        output_scores = [scores[i] for i in indices]
        output_classes = [class_ids[i] for i in indices]

        # Return the outputs
        return output_boxes, output_scores, output_classes

    def inference(self, image):
        """
        Performs inference using an ONNX model and returns the output image with drawn detections.

        Returns:
            output_img: The output image with drawn detections.
        """
        # Create an inference session using the ONNX model and specify execution providers
        temp_image = copy.deepcopy(image)
        image_height, image_width = image.shape[0], image.shape[1]

        # Preprocess the image data
        img_data = self.preprocess(temp_image)
        # Run inference using the preprocessed image data
        outputs = self.onnx_session.run(None, {self.input_name: img_data})
        # Perform post-processing on the outputs to obtain output image.
        bboxes, scores, class_ids = self.postprocess(outputs)
        # Return the resulting output image
        return bboxes, scores, class_ids