Spaces:
Sleeping
Sleeping
File size: 19,404 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import torch.nn as nn
import torch
import tools.utils as utils
import agent.dreamer_utils as common
from collections import OrderedDict
import numpy as np
from tools.genrl_utils import *
def stop_gradient(x):
return x.detach()
Module = nn.Module
def env_reward(agent, seq):
return agent.wm.heads['reward'](seq['feat']).mean
class DreamerAgent(Module):
def __init__(self,
name, cfg, obs_space, act_spec, **kwargs):
super().__init__()
self.name = name
self.cfg = cfg
self.cfg.update(**kwargs)
self.obs_space = obs_space
self.act_spec = act_spec
self._use_amp = (cfg.precision == 16)
self.device = cfg.device
self.act_dim = act_spec.shape[0]
self.wm = WorldModel(cfg, obs_space, self.act_dim,)
self.instantiate_acting_behavior()
self.to(cfg.device)
self.requires_grad_(requires_grad=False)
def instantiate_acting_behavior(self,):
self._acting_behavior = ActorCritic(self.cfg, self.act_spec, self.wm.inp_size).to(self.device)
def act(self, obs, meta, step, eval_mode, state):
if self.cfg.only_random_actions:
return np.random.uniform(-1, 1, self.act_dim,).astype(self.act_spec.dtype), (None, None)
obs = {k : torch.as_tensor(np.copy(v), device=self.device).unsqueeze(0) for k, v in obs.items()}
if state is None:
latent = self.wm.rssm.initial(len(obs['reward']))
action = torch.zeros((len(obs['reward']),) + self.act_spec.shape, device=self.device)
else:
latent, action = state
embed = self.wm.encoder(self.wm.preprocess(obs))
should_sample = (not eval_mode) or (not self.cfg.eval_state_mean)
latent, _ = self.wm.rssm.obs_step(latent, action, embed, obs['is_first'], should_sample)
feat = self.wm.rssm.get_feat(latent)
if eval_mode:
actor = self._acting_behavior.actor(feat)
try:
action = actor.mean
except:
action = actor._mean
else:
actor = self._acting_behavior.actor(feat)
action = actor.sample()
new_state = (latent, action)
return action.cpu().numpy()[0], new_state
def update_wm(self, data, step):
metrics = {}
state, outputs, mets = self.wm.update(data, state=None)
outputs['is_terminal'] = data['is_terminal']
metrics.update(mets)
return state, outputs, metrics
def update_acting_behavior(self, state=None, outputs=None, metrics={}, data=None, reward_fn=None):
if self.cfg.only_random_actions:
return {}, metrics
if outputs is not None:
post = outputs['post']
is_terminal = outputs['is_terminal']
else:
data = self.wm.preprocess(data)
embed = self.wm.encoder(data)
post, _ = self.wm.rssm.observe(
embed, data['action'], data['is_first'])
is_terminal = data['is_terminal']
#
start = {k: stop_gradient(v) for k,v in post.items()}
if reward_fn is None:
acting_reward_fn = lambda seq: globals()[self.cfg.acting_reward_fn](self, seq) #.mode()
else:
acting_reward_fn = lambda seq: reward_fn(self, seq) #.mode()
metrics.update(self._acting_behavior.update(self.wm, start, is_terminal, acting_reward_fn))
return start, metrics
def update(self, data, step):
state, outputs, metrics = self.update_wm(data, step)
start, metrics = self.update_acting_behavior(state, outputs, metrics, data)
return state, metrics
def report(self, data):
report = {}
data = self.wm.preprocess(data)
for key in self.wm.heads['decoder'].cnn_keys:
name = key.replace('/', '_')
report[f'openl_{name}'] = self.wm.video_pred(data, key)
for fn in getattr(self.cfg, 'additional_report_fns', []):
call_fn = globals()[fn]
additional_report = call_fn(self, data)
report.update(additional_report)
return report
def get_meta_specs(self):
return tuple()
def init_meta(self):
return OrderedDict()
def update_meta(self, meta, global_step, time_step, finetune=False):
return meta
class WorldModel(Module):
def __init__(self, config, obs_space, act_dim,):
super().__init__()
shapes = {k: tuple(v.shape) for k, v in obs_space.items()}
self.shapes = shapes
self.cfg = config
self.device = config.device
self.encoder = common.Encoder(shapes, **config.encoder)
# Computing embed dim
with torch.no_grad():
zeros = {k: torch.zeros( (1,) + v) for k, v in shapes.items()}
outs = self.encoder(zeros)
embed_dim = outs.shape[1]
self.embed_dim = embed_dim
self.rssm = common.EnsembleRSSM(**config.rssm, action_dim=act_dim, embed_dim=embed_dim, device=self.device,)
self.heads = {}
self._use_amp = (config.precision == 16)
self.inp_size = self.rssm.get_feat_size()
self.decoder_input_fn = getattr(self.rssm, f'get_{config.decoder_inputs}')
self.decoder_input_size = getattr(self.rssm, f'get_{config.decoder_inputs}_size')()
self.heads['decoder'] = common.Decoder(shapes, **config.decoder, embed_dim=self.decoder_input_size, image_dist=config.image_dist)
self.heads['reward'] = common.MLP(self.inp_size, (1,), **config.reward_head)
# zero init
with torch.no_grad():
for p in self.heads['reward']._out.parameters():
p.data = p.data * 0
#
if config.pred_discount:
self.heads['discount'] = common.MLP(self.inp_size, (1,), **config.discount_head)
for name in config.grad_heads:
assert name in self.heads, name
self.grad_heads = config.grad_heads
self.heads = nn.ModuleDict(self.heads)
self.model_opt = common.Optimizer('model', self.parameters(), **config.model_opt, use_amp=self._use_amp)
self.e2e_update_fns = {}
self.detached_update_fns = {}
self.eval()
def add_module_to_update(self, name, module, update_fn, detached=False):
self.add_module(name, module)
if detached:
self.detached_update_fns[name] = update_fn
else:
self.e2e_update_fns[name] = update_fn
self.model_opt = common.Optimizer('model', self.parameters(), **self.cfg.model_opt, use_amp=self._use_amp)
def update(self, data, state=None):
self.train()
with common.RequiresGrad(self):
with torch.cuda.amp.autocast(enabled=self._use_amp):
if getattr(self.cfg, "freeze_decoder", False):
self.heads['decoder'].requires_grad_(False)
if getattr(self.cfg, "freeze_post", False) or getattr(self.cfg, "freeze_model", False):
self.heads['decoder'].requires_grad_(False)
self.encoder.requires_grad_(False)
# Updating only prior
self.grad_heads = []
self.rssm.requires_grad_(False)
if not getattr(self.cfg, "freeze_model", False):
self.rssm._ensemble_img_out.requires_grad_(True)
self.rssm._ensemble_img_dist.requires_grad_(True)
model_loss, state, outputs, metrics = self.loss(data, state)
model_loss, metrics = self.update_additional_e2e_modules(data, outputs, model_loss, metrics)
metrics.update(self.model_opt(model_loss, self.parameters()))
if len(self.detached_update_fns) > 0:
detached_loss, metrics = self.update_additional_detached_modules(data, outputs, metrics)
self.eval()
return state, outputs, metrics
def update_additional_detached_modules(self, data, outputs, metrics):
# additional detached losses
detached_loss = 0
for k in self.detached_update_fns:
detached_module = getattr(self, k)
with common.RequiresGrad(detached_module):
with torch.cuda.amp.autocast(enabled=self._use_amp):
add_loss, add_metrics = self.detached_update_fns[k](self, k, data, outputs, metrics)
metrics.update(add_metrics)
opt_metrics = self.model_opt(add_loss, detached_module.parameters())
metrics.update({ f'{k}_{m}' : opt_metrics[m] for m in opt_metrics})
return detached_loss, metrics
def update_additional_e2e_modules(self, data, outputs, model_loss, metrics):
# additional e2e losses
for k in self.e2e_update_fns:
add_loss, add_metrics = self.e2e_update_fns[k](self, k, data, outputs, metrics)
model_loss += add_loss
metrics.update(add_metrics)
return model_loss, metrics
def observe_data(self, data, state=None):
data = self.preprocess(data)
embed = self.encoder(data)
post, prior = self.rssm.observe(
embed, data['action'], data['is_first'], state)
kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.cfg.kl)
outs = dict(embed=embed, post=post, prior=prior, is_terminal=data['is_terminal'])
return outs, { 'model_kl' : kl_value.mean() }
def loss(self, data, state=None):
data = self.preprocess(data)
embed = self.encoder(data)
post, prior = self.rssm.observe(
embed, data['action'], data['is_first'], state)
kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.cfg.kl)
assert len(kl_loss.shape) == 0 or (len(kl_loss.shape) == 1 and kl_loss.shape[0] == 1), kl_loss.shape
likes = {}
losses = {'kl': kl_loss}
feat = self.rssm.get_feat(post)
for name, head in self.heads.items():
grad_head = (name in self.grad_heads)
if name == 'decoder':
inp = self.decoder_input_fn(post)
else:
inp = feat
inp = inp if grad_head else stop_gradient(inp)
out = head(inp)
dists = out if isinstance(out, dict) else {name: out}
for key, dist in dists.items():
like = dist.log_prob(data[key])
likes[key] = like
losses[key] = -like.mean()
model_loss = sum(
self.cfg.loss_scales.get(k, 1.0) * v for k, v in losses.items())
outs = dict(
embed=embed, feat=feat, post=post,
prior=prior, likes=likes, kl=kl_value)
metrics = {f'{name}_loss': value for name, value in losses.items()}
metrics['model_kl'] = kl_value.mean()
metrics['prior_ent'] = self.rssm.get_dist(prior).entropy().mean()
metrics['post_ent'] = self.rssm.get_dist(post).entropy().mean()
last_state = {k: v[:, -1] for k, v in post.items()}
return model_loss, last_state, outs, metrics
def imagine(self, policy, start, is_terminal, horizon, task_cond=None, eval_policy=False):
flatten = lambda x: x.reshape([-1] + list(x.shape[2:]))
start = {k: flatten(v) for k, v in start.items()}
start['feat'] = self.rssm.get_feat(start)
inp = start['feat'] if task_cond is None else torch.cat([start['feat'], task_cond], dim=-1)
policy_dist = policy(inp)
start['action'] = torch.zeros_like(policy_dist.sample(), device=self.device) #.mode())
seq = {k: [v] for k, v in start.items()}
if task_cond is not None: seq['task'] = [task_cond]
for _ in range(horizon):
inp = seq['feat'][-1] if task_cond is None else torch.cat([seq['feat'][-1], task_cond], dim=-1)
policy_dist = policy(stop_gradient(inp))
action = policy_dist.sample() if not eval_policy else policy_dist.mean
state = self.rssm.img_step({k: v[-1] for k, v in seq.items()}, action)
feat = self.rssm.get_feat(state)
for key, value in {**state, 'action': action, 'feat': feat}.items():
seq[key].append(value)
if task_cond is not None: seq['task'].append(task_cond)
# shape will be (T, B, *DIMS)
seq = {k: torch.stack(v, 0) for k, v in seq.items()}
if 'discount' in self.heads:
disc = self.heads['discount'](seq['feat']).mean()
if is_terminal is not None:
# Override discount prediction for the first step with the true
# discount factor from the replay buffer.
true_first = 1.0 - flatten(is_terminal)
disc = torch.cat([true_first[None], disc[1:]], 0)
else:
disc = torch.ones(list(seq['feat'].shape[:-1]) + [1], device=self.device)
seq['discount'] = disc * self.cfg.discount
# Shift discount factors because they imply whether the following state
# will be valid, not whether the current state is valid.
seq['weight'] = torch.cumprod(torch.cat([torch.ones_like(disc[:1], device=self.device), disc[:-1]], 0), 0)
return seq
def preprocess(self, obs):
obs = obs.copy()
for key, value in obs.items():
if key.startswith('log_'):
continue
if value.dtype in [np.uint8, torch.uint8]:
value = value / 255.0 - 0.5
obs[key] = value
obs['reward'] = {
'identity': nn.Identity(),
'sign': torch.sign,
'tanh': torch.tanh,
}[self.cfg.clip_rewards](obs['reward'])
obs['discount'] = (1.0 - obs['is_terminal'].float())
if len(obs['discount'].shape) < len(obs['reward'].shape):
obs['discount'] = obs['discount'].unsqueeze(-1)
return obs
def video_pred(self, data, key, nvid=8):
decoder = self.heads['decoder'] # B, T, C, H, W
truth = data[key][:nvid] + 0.5
embed = self.encoder(data)
states, _ = self.rssm.observe(
embed[:nvid, :5], data['action'][:nvid, :5], data['is_first'][:nvid, :5])
recon = decoder(self.decoder_input_fn(states))[key].mean[:nvid] # mode
init = {k: v[:, -1] for k, v in states.items()}
prior = self.rssm.imagine(data['action'][:nvid, 5:], init)
prior_recon = decoder(self.decoder_input_fn(prior))[key].mean # mode
model = torch.clip(torch.cat([recon[:, :5] + 0.5, prior_recon + 0.5], 1), 0, 1)
error = (model - truth + 1) / 2
video = torch.cat([truth, model, error], 3)
B, T, C, H, W = video.shape
return video
class ActorCritic(Module):
def __init__(self, config, act_spec, feat_size, name=''):
super().__init__()
self.name = name
self.cfg = config
self.act_spec = act_spec
self._use_amp = (config.precision == 16)
self.device = config.device
if getattr(self.cfg, 'discrete_actions', False):
self.cfg.actor.dist = 'onehot'
self.actor_grad = getattr(self.cfg, f'{self.name}_actor_grad'.strip('_'))
inp_size = feat_size
self.actor = common.MLP(inp_size, act_spec.shape[0], **self.cfg.actor)
self.critic = common.MLP(inp_size, (1,), **self.cfg.critic)
if self.cfg.slow_target:
self._target_critic = common.MLP(inp_size, (1,), **self.cfg.critic)
self._updates = 0 # tf.Variable(0, tf.int64)
else:
self._target_critic = self.critic
self.actor_opt = common.Optimizer('actor', self.actor.parameters(), **self.cfg.actor_opt, use_amp=self._use_amp)
self.critic_opt = common.Optimizer('critic', self.critic.parameters(), **self.cfg.critic_opt, use_amp=self._use_amp)
if self.cfg.reward_ema:
# register ema_vals to nn.Module for enabling torch.save and torch.load
self.register_buffer("ema_vals", torch.zeros((2,)).to(self.device))
self.reward_ema = common.RewardEMA(device=self.device)
self.rewnorm = common.StreamNorm(momentum=1, scale=1.0, device=self.device)
else:
self.rewnorm = common.StreamNorm(**self.cfg.reward_norm, device=self.device)
# zero init
with torch.no_grad():
for p in self.critic._out.parameters():
p.data = p.data * 0
# hard copy critic initial params
for s, d in zip(self.critic.parameters(), self._target_critic.parameters()):
d.data = s.data
#
def update(self, world_model, start, is_terminal, reward_fn):
metrics = {}
hor = self.cfg.imag_horizon
# The weights are is_terminal flags for the imagination start states.
# Technically, they should multiply the losses from the second trajectory
# step onwards, which is the first imagined step. However, we are not
# training the action that led into the first step anyway, so we can use
# them to scale the whole sequence.
with common.RequiresGrad(self.actor):
with torch.cuda.amp.autocast(enabled=self._use_amp):
seq = world_model.imagine(self.actor, start, is_terminal, hor)
reward = reward_fn(seq)
seq['reward'], mets1 = self.rewnorm(reward)
mets1 = {f'reward_{k}': v for k, v in mets1.items()}
target, mets2, baseline = self.target(seq)
actor_loss, mets3 = self.actor_loss(seq, target, baseline)
metrics.update(self.actor_opt(actor_loss, self.actor.parameters()))
with common.RequiresGrad(self.critic):
with torch.cuda.amp.autocast(enabled=self._use_amp):
seq = {k: stop_gradient(v) for k,v in seq.items()}
critic_loss, mets4 = self.critic_loss(seq, target)
metrics.update(self.critic_opt(critic_loss, self.critic.parameters()))
metrics.update(**mets1, **mets2, **mets3, **mets4)
self.update_slow_target() # Variables exist after first forward pass.
return { f'{self.name}_{k}'.strip('_') : v for k,v in metrics.items() }
def actor_loss(self, seq, target, baseline): #, step):
# Two state-actions are lost at the end of the trajectory, one for the boostrap
# value prediction and one because the corresponding action does not lead
# anywhere anymore. One target is lost at the start of the trajectory
# because the initial state comes from the replay buffer.
policy = self.actor(stop_gradient(seq['feat'][:-2])) # actions are the ones in [1:-1]
metrics = {}
if self.cfg.reward_ema:
offset, scale = self.reward_ema(target, self.ema_vals)
normed_target = (target - offset) / scale
normed_baseline = (baseline - offset) / scale
# adv = normed_target - normed_baseline
metrics['normed_target_mean'] = normed_target.mean()
metrics['normed_target_std'] = normed_target.std()
metrics["reward_ema_005"] = self.ema_vals[0]
metrics["reward_ema_095"] = self.ema_vals[1]
else:
normed_target = target
normed_baseline = baseline
if self.actor_grad == 'dynamics':
objective = normed_target[1:]
elif self.actor_grad == 'reinforce':
advantage = normed_target[1:] - normed_baseline[1:]
objective = policy.log_prob(stop_gradient(seq['action'][1:-1]))[:,:,None] * advantage
else:
raise NotImplementedError(self.actor_grad)
ent = policy.entropy()[:,:,None]
ent_scale = self.cfg.actor_ent
objective += ent_scale * ent
metrics['actor_ent'] = ent.mean()
metrics['actor_ent_scale'] = ent_scale
weight = stop_gradient(seq['weight'])
actor_loss = -(weight[:-2] * objective).mean()
return actor_loss, metrics
def critic_loss(self, seq, target):
feat = seq['feat'][:-1]
target = stop_gradient(target)
weight = stop_gradient(seq['weight'])
dist = self.critic(feat)
critic_loss = -(dist.log_prob(target)[:,:,None] * weight[:-1]).mean()
metrics = {'critic': dist.mean.mean() }
return critic_loss, metrics
def target(self, seq):
reward = seq['reward']
disc = seq['discount']
value = self._target_critic(seq['feat']).mean
# Skipping last time step because it is used for bootstrapping.
target = common.lambda_return(
reward[:-1], value[:-1], disc[:-1],
bootstrap=value[-1],
lambda_=self.cfg.discount_lambda,
axis=0)
metrics = {}
metrics['critic_slow'] = value.mean()
metrics['critic_target'] = target.mean()
return target, metrics, value[:-1]
def update_slow_target(self):
if self.cfg.slow_target:
if self._updates % self.cfg.slow_target_update == 0:
mix = 1.0 if self._updates == 0 else float(
self.cfg.slow_target_fraction)
for s, d in zip(self.critic.parameters(), self._target_critic.parameters()):
d.data = mix * s.data + (1 - mix) * d.data
self._updates += 1 |