File size: 37,256 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
import re

import numpy as np

import tools.utils as utils
import torch.nn as nn
import torch
import torch.distributions as D
import torch.nn.functional as F

Module = nn.Module 

def symlog(x):
  return torch.sign(x) * torch.log(torch.abs(x) + 1.0)

def symexp(x):
  return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0)

def signed_hyperbolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
    """Signed hyperbolic transform, inverse of signed_parabolic."""
    return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x

def signed_parabolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
    """Signed parabolic transform, inverse of signed_hyperbolic."""
    z = torch.sqrt(1 + 4 * eps * (eps + 1 + torch.abs(x))) / 2 / eps - 1 / 2 / eps
    return torch.sign(x) * (torch.square(z) - 1)

class SampleDist:
    def __init__(self, dist: D.Distribution, samples=100):
        self._dist = dist
        self._samples = samples

    @property
    def name(self):
        return 'SampleDist'

    def __getattr__(self, name):
        return getattr(self._dist, name)

    @property
    def mean(self):
        sample = self._dist.rsample((self._samples,))
        return torch.mean(sample, 0)

    def mode(self):
        dist = self._dist.expand((self._samples, *self._dist.batch_shape))
        sample = dist.rsample()
        logprob = dist.log_prob(sample)
        batch_size = sample.size(1)
        feature_size = sample.size(2)
        indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
        return torch.gather(sample, 0, indices).squeeze(0)

    def entropy(self):
        sample = self._dist.rsample((self._samples,))
        logprob = self._dist.log_prob(sample)
        return -torch.mean(logprob, 0)

    def sample(self):
        return self._dist.rsample()

class MSEDist:
    def __init__(self, mode, agg="sum"):
        self._mode = mode
        self._agg = agg

    @property
    def mean(self):
        return self._mode

    def mode(self):
        return self._mode

    def log_prob(self, value):
        assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
        distance = (self._mode - value) ** 2
        if self._agg == "mean":
            loss = distance.mean(list(range(len(distance.shape)))[2:])
        elif self._agg == "sum":
            loss = distance.sum(list(range(len(distance.shape)))[2:])
        else:
            raise NotImplementedError(self._agg)
        return -loss

class SymlogDist:

  def __init__(self, mode, dims, dist='mse', agg='sum', tol=1e-8):
    self._mode = mode
    self._dims = tuple([-x for x in range(1, dims + 1)])
    self._dist = dist
    self._agg = agg
    self._tol = tol
    self.batch_shape = mode.shape[:len(mode.shape) - dims]
    self.event_shape = mode.shape[len(mode.shape) - dims:]

  def mode(self):
    return symexp(self._mode)

  def mean(self):
    return symexp(self._mode)

  def log_prob(self, value):
    assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
    if self._dist == 'mse':
      distance = (self._mode - symlog(value)) ** 2
      distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
    elif self._dist == 'abs':
      distance = torch.abs(self._mode - symlog(value))
      distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
    else:
      raise NotImplementedError(self._dist)
    if self._agg == 'mean':
      loss = distance.mean(self._dims)
    elif self._agg == 'sum':
      loss = distance.sum(self._dims)
    else:
      raise NotImplementedError(self._agg)
    return -loss

class TwoHotDist:
    def __init__(
        self,
        logits,
        low=-20.0,
        high=20.0,
        transfwd=symlog,
        transbwd=symexp,
    ):
        assert logits.shape[-1] == 255
        self.logits = logits
        self.probs = torch.softmax(logits, -1)
        self.buckets = torch.linspace(low, high, steps=255).to(logits.device)
        self.width = (self.buckets[-1] - self.buckets[0]) / 255
        self.transfwd = transfwd
        self.transbwd = transbwd

    @property
    def mean(self):
        _mean = self.probs * self.buckets
        return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True))

    @property
    def mode(self):
        return self.mean

    # Inside OneHotCategorical, log_prob is calculated using only max element in targets
    def log_prob(self, x):
        x = self.transfwd(x)
        # x(time, batch, 1)
        below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
        above = len(self.buckets) - torch.sum(
            (self.buckets > x[..., None]).to(torch.int32), dim=-1
        )
        # this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits.
        below = torch.clip(below, 0, len(self.buckets) - 1)
        above = torch.clip(above, 0, len(self.buckets) - 1)
        equal = below == above

        dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
        dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
        total = dist_to_below + dist_to_above
        weight_below = dist_to_above / total
        weight_above = dist_to_below / total
        target = (
            F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None]
            + F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
        )
        log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
        target = target.squeeze(-2)

        return (target * log_pred).sum(-1)

    def log_prob_target(self, target):
        log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
        return (target * log_pred).sum(-1)

class OneHotDist(D.OneHotCategorical):

  def __init__(self, logits=None, probs=None, unif_mix=0.99):
    super().__init__(logits=logits, probs=probs)
    probs = super().probs
    probs = unif_mix * probs + (1 - unif_mix) * torch.ones_like(probs, device=probs.device) / probs.shape[-1]
    super().__init__(probs=probs)

  def mode(self):
    _mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1])
    return _mode.detach() + super().logits - super().logits.detach()

  def sample(self, sample_shape=(), seed=None):
    if seed is not None:
      raise ValueError('need to check')
    sample = super().sample(sample_shape)
    probs = super().probs
    while len(probs.shape) < len(sample.shape):
      probs = probs[None]
    sample += probs - probs.detach() # ST-gradients
    return sample

class BernoulliDist(D.Bernoulli):
  def __init__(self, logits=None, probs=None):
    super().__init__(logits=logits, probs=probs)

  def sample(self, sample_shape=(), seed=None):
    if seed is not None:
      raise ValueError('need to check')
    sample = super().sample(sample_shape)
    probs = super().probs
    while len(probs.shape) < len(sample.shape):
      probs = probs[None]
    sample += probs - probs.detach() # ST-gradients
    return sample

def static_scan_for_lambda_return(fn, inputs, start):
  last = start
  indices = range(inputs[0].shape[0])
  indices = reversed(indices)
  flag = True
  for index in indices:
    inp = lambda x: (_input[x].unsqueeze(0) for _input in inputs)
    last = fn(last, *inp(index))
    if flag:
      outputs = last
      flag = False
    else:
      outputs = torch.cat([last, outputs], dim=0) 
  return outputs

def lambda_return(
    reward, value, pcont, bootstrap, lambda_, axis):
  # Setting lambda=1 gives a discounted Monte Carlo return.
  # Setting lambda=0 gives a fixed 1-step return.
  #assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
  assert len(reward.shape) == len(value.shape), (reward.shape, value.shape)
  if isinstance(pcont, (int, float)):
    pcont = pcont * torch.ones_like(reward, device=reward.device)
  dims = list(range(len(reward.shape)))
  dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
  if axis != 0:
    reward = reward.permute(dims)
    value = value.permute(dims)
    pcont = pcont.permute(dims)
  if bootstrap is None:
    bootstrap = torch.zeros_like(value[-1], device=reward.device)
  if len(bootstrap.shape) < len(value.shape):
    bootstrap = bootstrap[None]
  next_values = torch.cat([value[1:], bootstrap], 0)
  inputs = reward + pcont * next_values * (1 - lambda_)
  returns = static_scan_for_lambda_return(
      lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg,
      (inputs, pcont), bootstrap)
  if axis != 0:
    returns = returns.permute(dims)
  return returns

def static_scan(fn, inputs, start, reverse=False, unpack=False):
  last = start
  indices = range(inputs[0].shape[0])
  flag = True
  for index in indices:
    inp = lambda x: (_input[x] for _input in inputs)
    if unpack:
      last = fn(last, *[inp[index] for inp in inputs]) 
    else:
      last = fn(last, inp(index)) 
    if flag:
      if type(last) == type({}):
        outputs = {key: [value] for key, value in last.items()}
      else:
        outputs = []
        for _last in last:
          if type(_last) == type({}):
            outputs.append({key: [value] for key, value in _last.items()})
          else:
            outputs.append([_last])
      flag = False
    else:
      if type(last) == type({}):
        for key in last.keys():
          outputs[key].append(last[key]) 
      else:
        for j in range(len(outputs)):
          if type(last[j]) == type({}):
            for key in last[j].keys():
              outputs[j][key].append(last[j][key]) 
          else:
            outputs[j].append(last[j]) 
  # Stack everything at the end
  if type(last) == type({}):
    for key in last.keys():
      outputs[key] = torch.stack(outputs[key], dim=0)
  else:
    for j in range(len(outputs)):
      if type(last[j]) == type({}):
        for key in last[j].keys():
          outputs[j][key] = torch.stack(outputs[j][key], dim=0)
      else:
        outputs[j] = torch.stack(outputs[j], dim=0)
  if type(last) == type({}):
    outputs = [outputs]
  return outputs

class EnsembleRSSM(Module):

  def __init__(
      self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
      act='SiLU', norm='none', std_act='softplus', min_std=0.1, action_dim=None, embed_dim=1536, device='cuda', 
      single_obs_posterior=False, cell_input='stoch', cell_type='gru',):
    super().__init__()
    assert action_dim is not None 
    self.device = device
    self._embed_dim = embed_dim
    self._action_dim = action_dim
    self._ensemble = ensemble
    self._stoch = stoch
    self._deter = deter
    self._hidden = hidden
    self._discrete = discrete
    self._act = get_act(act)
    self._norm = norm
    self._std_act = std_act
    self._min_std = min_std
    self._cell_type = cell_type
    self.cell_input = cell_input
    if cell_type == 'gru':
      self._cell = GRUCell(self._hidden, self._deter, norm=True, device=self.device)
    else:
      raise NotImplementedError(f"{cell_type} not implemented")
    self.single_obs_posterior = single_obs_posterior

    if discrete:
      self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, stoch*discrete) for _ in range(ensemble)])
      self._obs_dist = nn.Linear(hidden, stoch*discrete)
    else:
      self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, 2*stoch) for _ in range(ensemble)])
      self._obs_dist = nn.Linear(hidden, 2*stoch)

    # Layer that projects (stoch, input) to cell_state space
    cell_state_input_size = getattr(self, f'get_{self.cell_input}_size')()
    self._img_in = nn.Sequential(nn.Linear(cell_state_input_size + action_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
    # Layer that project deter -> hidden [before projecting hidden -> stoch]
    self._ensemble_img_out = nn.ModuleList([ nn.Sequential(nn.Linear(self.get_deter_size(), hidden, bias=norm != 'none'), NormLayer(norm, hidden)) for _ in range(ensemble)])

    if self.single_obs_posterior:
      self._obs_out = nn.Sequential(nn.Linear(embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
    else:
      self._obs_out = nn.Sequential(nn.Linear(deter + embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))

  def initial(self, batch_size):
    if self._discrete:
      state = dict(
          logit=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device), 
          stoch=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device), 
          deter=self._cell.get_initial_state(None, batch_size)) 
    else:
      state = dict(
          mean=torch.zeros([batch_size, self._stoch], device=self.device), 
          std=torch.zeros([batch_size, self._stoch], device=self.device),
          stoch=torch.zeros([batch_size, self._stoch], device=self.device), 
          deter=self._cell.get_initial_state(None, batch_size)) 
    return state

  def observe(self, embed, action, is_first, state=None):
    swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
    if state is None: state = self.initial(action.shape[0])

    post, prior = static_scan(
        lambda prev, inputs: self.obs_step(prev[0], *inputs),
        (swap(action), swap(embed), swap(is_first)), (state, state))
    post = {k: swap(v) for k, v in post.items()}
    prior = {k: swap(v) for k, v in prior.items()}
    return post, prior

  def imagine(self, action, state=None, sample=True):
    swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
    if state is None:
      state = self.initial(action.shape[0])
    assert isinstance(state, dict), state
    action = swap(action)
    prior = static_scan(self.img_step, [action, float(sample) + torch.zeros(action.shape[0])], state, unpack=True)[0] 
    prior = {k: swap(v) for k, v in prior.items()}
    return prior

  def get_stoch_size(self,):
    if self._discrete:
      return self._stoch * self._discrete
    else:
      return self._stoch

  def get_deter_size(self,):
      return self._cell.state_size

  def get_feat_size(self,):
    return self.get_deter_size() + self.get_stoch_size()

  def get_stoch(self, state):
    stoch = state['stoch'] 
    if self._discrete:
      shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete]
      stoch = stoch.reshape(shape)
    return stoch

  def get_deter(self, state):
      return state['deter']

  def get_feat(self, state):
    deter = self.get_deter(state)
    stoch = self.get_stoch(state)
    return torch.cat([stoch, deter], -1)

  def get_dist(self, state, ensemble=False):
    if ensemble:
      state = self._suff_stats_ensemble(state['deter'])
    if self._discrete:
      logit = state['logit']
      dist = D.Independent(OneHotDist(logit.float()), 1)
    else:
      mean, std = state['mean'], state['std']
      dist = D.Independent(D.Normal(mean, std), 1)
      dist.sample = dist.rsample
    return dist

  def get_unif_dist(self, state):
    if self._discrete:
      logit = state['logit']
      dist = D.Independent(OneHotDist(torch.ones_like(logit, device=logit.device)), 1)
    else:
      mean, std = state['mean'], state['std']
      dist = D.Independent(D.Normal(torch.zeros_like(mean, device=mean.device), torch.ones_like(std, device=std.device)), 1)
      dist.sample = dist.rsample
    return dist

  def obs_step(self, prev_state, prev_action, embed, is_first, should_sample=True):
    if is_first.any():
      prev_state = { k: torch.einsum('b,b...->b...', 1.0 - is_first.float(), x) for k, x in prev_state.items() }
      prev_action = torch.einsum('b,b...->b...', 1.0 - is_first.float(), prev_action)
    #
    prior = self.img_step(prev_state, prev_action, should_sample)
    stoch, stats = self.get_post_stoch(embed, prior, should_sample)
    post = {'stoch': stoch, 'deter': prior['deter'], **stats}
    return post, prior

  def get_post_stoch(self, embed, prior, should_sample=True):
    if self.single_obs_posterior:
      x = embed
    else:
      x = torch.cat([prior['deter'], embed], -1)
    x = self._obs_out(x)
    x = self._act(x)
  
    bs = list(x.shape[:-1])
    x = x.reshape([-1, x.shape[-1]])
    stats = self._suff_stats_layer('_obs_dist', x)
    stats = { k: v.reshape( bs + list(v.shape[1:])) for k, v in stats.items()}
    
    dist = self.get_dist(stats)
    stoch = dist.sample() if should_sample else dist.mode() 
    return stoch, stats

  def img_step(self, prev_state, prev_action, sample=True,):
    prev_state_input = getattr(self, f'get_{self.cell_input}')(prev_state)
    x = torch.cat([prev_state_input, prev_action], -1)
    x = self._img_in(x)
    x = self._act(x)
    deter = prev_state['deter']
    if self._cell_type == 'gru':
      x, deter = self._cell(x, [deter])
      temp_state = {'deter' : deter[0] }
    else:
      raise NotImplementedError(f"no {self._cell_type} cell method")
    deter = deter[0]  # It's wrapped in a list.
    stoch, stats = self.get_stoch_stats_from_deter_state(temp_state, sample)
    prior = {'stoch': stoch, 'deter': deter, **stats}
    return prior

  def get_stoch_stats_from_deter_state(self, temp_state, sample=True):
    stats = self._suff_stats_ensemble(self.get_deter(temp_state))
    index = torch.randint(0, self._ensemble, ()) 
    stats = {k: v[index] for k, v in stats.items()}
    dist = self.get_dist(stats)
    if sample:
      stoch = dist.sample()
    else:
      try:
        stoch = dist.mode()
      except:
        stoch = dist.mean
    return stoch, stats

  def _suff_stats_ensemble(self, inp):
    bs = list(inp.shape[:-1])
    inp = inp.reshape([-1, inp.shape[-1]])
    stats = []
    for k in range(self._ensemble):
      x = self._ensemble_img_out[k](inp)
      x = self._act(x)
      stats.append(self._suff_stats_layer('_ensemble_img_dist', x, k=k))
    stats = {
        k: torch.stack([x[k] for x in stats], 0)
        for k, v in stats[0].items()}
    stats = {
        k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
        for k, v in stats.items()}
    return stats

  def _suff_stats_layer(self, name, x, k=None):
    layer = getattr(self, name)
    if k is not None:
      layer = layer[k]
    x = layer(x)
    if self._discrete:
      logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete])
      return {'logit': logit}
    else:
      mean, std = torch.chunk(x, 2, -1)
      std = {
          'softplus': lambda: F.softplus(std),
          'sigmoid': lambda: torch.sigmoid(std),
          'sigmoid2': lambda: 2 * torch.sigmoid(std / 2),
      }[self._std_act]()
      std = std + self._min_std
      return {'mean': mean, 'std': std}

  def vq_loss(self, post, prior, balance):
    dim_repr = prior['output'].shape[-1]
    # Vectors and codes are the same, but vectors have gradients
    dyn_loss = balance * F.mse_loss(prior['output'], post['vectors'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['vectors'])
    dyn_loss += balance * F.mse_loss(prior['output'], post['codes'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['codes']) 
    dyn_loss /= 2
    vq_loss = 0.25 * F.mse_loss(post['output'], post['codes'].detach()) + F.mse_loss(post['output'].detach(), post['codes'])

    loss = vq_loss + dyn_loss 
    return loss * dim_repr, dyn_loss * dim_repr
  
  def kl_loss(self, post, prior, forward, balance, free, free_avg,):
    kld = D.kl_divergence
    sg = lambda x: {k: v.detach() for k, v in x.items()} 
    lhs, rhs = (prior, post) if forward else (post, prior)
    mix = balance if forward else (1 - balance)
    dtype = post['stoch'].dtype
    device = post['stoch'].device
    free_tensor = torch.tensor([free], dtype=dtype, device=device)
    if balance == 0.5:
      value = kld(self.get_dist(lhs), self.get_dist(rhs))
      loss = torch.maximum(value, free_tensor).mean()
    else:
      value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
      value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
      if free_avg:
        loss_lhs = torch.maximum(value_lhs.mean(), free_tensor)
        loss_rhs = torch.maximum(value_rhs.mean(), free_tensor)
      else:
        loss_lhs = torch.maximum(value_lhs, free_tensor).mean()
        loss_rhs = torch.maximum(value_rhs, free_tensor).mean()
      loss = mix * loss_lhs + (1 - mix) * loss_rhs
    return loss, value


class Encoder(Module):

  def __init__(
      self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
      cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], symlog_inputs=False,):
    super().__init__()
    self.shapes = shapes
    self.cnn_keys = [
        k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
    self.mlp_keys = [
        k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
    print('Encoder CNN inputs:', list(self.cnn_keys))
    print('Encoder MLP inputs:', list(self.mlp_keys))
    self._act = get_act(act)
    self._norm = norm
    self._cnn_depth = cnn_depth
    self._cnn_kernels = cnn_kernels
    self._mlp_layers = mlp_layers
    self._symlog_inputs = symlog_inputs

    if len(self.cnn_keys) > 0:
      self._conv_model = []
      for i, kernel in enumerate(self._cnn_kernels):
        if i == 0:
          prev_depth = 3
        else:
          prev_depth = 2 ** (i-1) * self._cnn_depth  
        depth = 2 ** i * self._cnn_depth
        self._conv_model.append(nn.Conv2d(prev_depth, depth, kernel, stride=2))
        self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm,depth))
        self._conv_model.append(self._act)
      self._conv_model = nn.Sequential(*self._conv_model)
    if len(self.mlp_keys) > 0:
      self._mlp_model = []
      for i, width in enumerate(self._mlp_layers):
        if i == 0:
          prev_width = np.sum([shapes[k] for k in self.mlp_keys]) 
        else:
          prev_width = self._mlp_layers[i-1]
        self._mlp_model.append(nn.Linear(prev_width, width, bias=norm != 'none'))
        self._mlp_model.append(NormLayer(norm, width))
        self._mlp_model.append(self._act)
      if len(self._mlp_model) == 0:
        self._mlp_model.append(nn.Identity())
      self._mlp_model = nn.Sequential(*self._mlp_model)

  def forward(self, data):
    key, shape = list(self.shapes.items())[0]
    batch_dims = data[key].shape[:-len(shape)]
    data = {
        k: v.reshape((-1,) + tuple(v.shape)[len(batch_dims):])
        for k, v in data.items()}
    outputs = []
    if self.cnn_keys:
      outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
    if self.mlp_keys:
      outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
    output = torch.cat(outputs, -1)
    return output.reshape(batch_dims + output.shape[1:])

  def _cnn(self, data):
    x = torch.cat(list(data.values()), -1)
    x = self._conv_model(x)
    return x.reshape(tuple(x.shape[:-3]) + (-1,))

  def _mlp(self, data):
    x = torch.cat(list(data.values()), -1)
    if self._symlog_inputs:
      x = symlog(x)
    x = self._mlp_model(x)
    return x


class Decoder(Module):

  def __init__(
      self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
      cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], embed_dim=1024, mlp_dist='mse', image_dist='mse'):
    super().__init__()
    self._embed_dim = embed_dim
    self._shapes = shapes
    self.cnn_keys = [
        k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
    self.mlp_keys = [
        k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
    print('Decoder CNN outputs:', list(self.cnn_keys))
    print('Decoder MLP outputs:', list(self.mlp_keys))
    self._act = get_act(act)
    self._norm = norm
    self._cnn_depth = cnn_depth
    self._cnn_kernels = cnn_kernels
    self._mlp_layers = mlp_layers
    self.channels = {k: self._shapes[k][0] for k in self.cnn_keys}
    self._mlp_dist = mlp_dist
    self._image_dist = image_dist

    if len(self.cnn_keys) > 0:

      self._conv_in = nn.Sequential(nn.Linear(embed_dim, 32*self._cnn_depth))
      self._conv_model = []
      for i, kernel in enumerate(self._cnn_kernels):
        if i == 0:
          prev_depth = 32*self._cnn_depth
        else:
          prev_depth = 2 ** (len(self._cnn_kernels) - (i - 1) - 2) * self._cnn_depth
        depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
        act, norm = self._act, self._norm
        # Last layer is dist layer 
        if i == len(self._cnn_kernels) - 1:
          depth, act, norm = sum(self.channels.values()), nn.Identity(), 'none'
        self._conv_model.append(nn.ConvTranspose2d(prev_depth, depth, kernel, stride=2))
        self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm, depth))
        self._conv_model.append(act)
      self._conv_model = nn.Sequential(*self._conv_model)
    if len(self.mlp_keys) > 0:
      self._mlp_model = []
      for i, width in enumerate(self._mlp_layers):
        if i == 0:
          prev_width = embed_dim
        else:
          prev_width = self._mlp_layers[i-1]
        self._mlp_model.append(nn.Linear(prev_width, width, bias=self._norm != 'none'))
        self._mlp_model.append(NormLayer(self._norm, width))
        self._mlp_model.append(self._act)
      self._mlp_model = nn.Sequential(*self._mlp_model)
      for key, shape in { k : shapes[k] for k in self.mlp_keys }.items():
        self.add_module(f'dense_{key}', DistLayer(width, shape, dist=self._mlp_dist))

  def forward(self, features):
    outputs = {}
    
    if self.cnn_keys:
      outputs.update(self._cnn(features))
    if self.mlp_keys:
      outputs.update(self._mlp(features))
    return outputs

  def _cnn(self, features):
    x = self._conv_in(features)
    x = x.reshape([-1, 32 * self._cnn_depth, 1, 1,])
    x = self._conv_model(x)
    x = x.reshape(list(features.shape[:-1]) + list(x.shape[1:])) 
    if len(x.shape) == 5:
      means = torch.split(x, list(self.channels.values()), 2)
    else:
      means = torch.split(x, list(self.channels.values()), 1)
    image_dist = dict(mse=lambda x : MSEDist(x), normal_unit_std=lambda x : D.Independent(D.Normal(x, 1.0), 3))[self._image_dist]
    dists = { key: image_dist(mean) for (key, shape), mean in zip(self.channels.items(), means)}
    return dists

  def _mlp(self, features):
    shapes = {k: self._shapes[k] for k in self.mlp_keys}
    x = features
    x = self._mlp_model(x)
    dists = {}
    for key, shape in shapes.items():
      dists[key] = getattr(self, f'dense_{key}')(x)
    return dists


class MLP(Module):

  def __init__(self, in_shape, shape, layers, units, act='SiLU', norm='none', **out):
    super().__init__()
    self._in_shape = in_shape
    if out['dist'] == 'twohot':
      shape = 255
    self._shape = (shape,) if isinstance(shape, int) else shape
    self._layers = layers
    self._units = units
    self._norm = norm
    self._act = get_act(act)
    self._out = out
    
    last_units = in_shape
    for index in range(self._layers):
      self.add_module(f'dense{index}', nn.Linear(last_units, units, bias=norm != 'none'))
      self.add_module(f'norm{index}', NormLayer(norm, units))
      last_units = units
    self._out = DistLayer(units, shape, **out)

  def forward(self, features):
    x = features 
    x = x.reshape([-1, x.shape[-1]])
    for index in range(self._layers):
      x = getattr(self, f'dense{index}')(x)
      x = getattr(self, f'norm{index}')(x)
      x = self._act(x)
    x = x.reshape(list(features.shape[:-1]) + [x.shape[-1]])
    return self._out(x)


class GRUCell(Module):

  def __init__(self, inp_size, size, norm=False, act='Tanh', update_bias=-1, device='cuda', **kwargs):
    super().__init__()
    self._inp_size = inp_size
    self._size = size
    self._act = get_act(act)
    self._norm = norm
    self._update_bias = update_bias
    self.device = device
    self._layer = nn.Linear(inp_size + size, 3 * size, bias=(not norm), **kwargs)
    if norm:
      self._norm = nn.LayerNorm(3*size)

  def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
    return torch.zeros((batch_size), self._size, device=self.device)

  @property
  def state_size(self):
    return self._size

  def forward(self, inputs, deter_state):
    """
      inputs : non-linear combination of previous stoch and action 
      deter_state : prev hidden state of the cell
    """
    deter_state = deter_state[0]  # State is wrapped in a list.
    parts = self._layer(torch.cat([inputs, deter_state], -1))
    if self._norm:
      parts = self._norm(parts)
    reset, cand, update = torch.chunk(parts, 3, -1)
    reset = torch.sigmoid(reset)
    cand = self._act(reset * cand)
    update = torch.sigmoid(update + self._update_bias)
    output = update * cand + (1 - update) * deter_state
    return output, [output]

class DistLayer(Module):

  def __init__(
      self, in_dim, shape, dist='mse', min_std=0.1, max_std=1.0, init_std=0.0, bias=True):
    super().__init__()
    self._in_dim = in_dim
    self._shape = shape if type(shape) in [list,tuple] else [shape]
    self._dist = dist
    self._min_std = min_std
    self._init_std = init_std
    self._max_std = max_std
    self._out = nn.Linear(in_dim, int(np.prod(shape)) , bias=bias)
    if dist in ('normal', 'tanh_normal', 'trunc_normal'):
      self._std = nn.Linear(in_dim, int(np.prod(shape)) )

  def forward(self, inputs):
    out = self._out(inputs)
    out = out.reshape(list(inputs.shape[:-1]) + list(self._shape)) 
    if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
      std = self._std(inputs) 
      std = std.reshape(list(inputs.shape[:-1]) + list(self._shape)) 
    if self._dist == 'mse':
      return MSEDist(out,)
    if self._dist == 'normal_unit_std':
      dist = D.Normal(out, 1.0)
      dist.sample = dist.rsample
      return D.Independent(dist, len(self._shape))
    if self._dist == 'normal':
      mean = torch.tanh(out)
      std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std
      dist = D.Normal(mean, std)
      dist.sample = dist.rsample
      return D.Independent(dist, len(self._shape))
    if self._dist == 'binary':
      out = torch.sigmoid(out)
      dist = BernoulliDist(out)
      return D.Independent(dist, len(self._shape))
    if self._dist == 'tanh_normal':
      mean = 5 * torch.tanh(out / 5)
      std = F.softplus(std + self._init_std) + self._min_std
      dist = utils.SquashedNormal(mean, std)
      dist = D.Independent(dist, len(self._shape))
      return SampleDist(dist)
    if self._dist == 'trunc_normal':
      mean = torch.tanh(out)
      std = 2 * torch.sigmoid((std + self._init_std) / 2) + self._min_std
      dist = utils.TruncatedNormal(mean, std)
      return D.Independent(dist, 1)
    if self._dist == 'onehot':
      return OneHotDist(out.float()) 
    if self._dist == 'twohot':
      return TwoHotDist(out.float())
    if self._dist == 'symlog_mse':
      return SymlogDist(out, len(self._shape), 'mse') 
    raise NotImplementedError(self._dist)


class NormLayer(Module):

  def __init__(self, name, dim=None):
    super().__init__()
    if name == 'none':
      self._layer = None
    elif name == 'layer':
      assert dim != None
      self._layer = nn.LayerNorm(dim)
    else:
      raise NotImplementedError(name)

  def forward(self, features):
    if self._layer is None:
      return features
    return self._layer(features)


def get_act(name):
  if name == 'none':
    return nn.Identity()
  elif hasattr(nn, name):
    return getattr(nn, name)()
  else:
    raise NotImplementedError(name)


class Optimizer:

  def __init__(
      self, name, parameters, lr, eps=1e-4, clip=None, wd=None,
      opt='adam', wd_pattern=r'.*', use_amp=False):
    assert 0 <= wd < 1
    assert not clip or 1 <= clip
    self._name = name
    self._clip = clip
    self._wd = wd
    self._wd_pattern = wd_pattern
    self._opt = {
        'adam': lambda: torch.optim.Adam(parameters, lr, eps=eps),
        'nadam': lambda: torch.optim.Nadam(parameters, lr, eps=eps),
        'adamax': lambda: torch.optim.Adamax(parameters, lr, eps=eps),
        'sgd': lambda: torch.optim.SGD(parameters, lr),
        'momentum': lambda: torch.optim.SGD(lr, momentum=0.9),
    }[opt]()
    self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
    self._once = True

  def __call__(self, loss, params):
    params = list(params)
    assert len(loss.shape) == 0 or (len(loss.shape) == 1 and loss.shape[0] == 1), (self._name, loss.shape)
    metrics = {}

    # Count parameters.
    if self._once:
      count = sum(p.numel() for p in params if p.requires_grad) 
      print(f'Found {count} {self._name} parameters.')
      self._once = False

    # Check loss.
    metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy()

    # Compute scaled gradient.
    self._scaler.scale(loss).backward()
    self._scaler.unscale_(self._opt)

    # Gradient clipping.
    if self._clip:
      norm = torch.nn.utils.clip_grad_norm_(params, self._clip)
      metrics[f'{self._name}_grad_norm'] = norm.item()
  
    # Weight decay.
    if self._wd:
      self._apply_weight_decay(params)
    
    # # Apply gradients.
    self._scaler.step(self._opt)
    self._scaler.update()
    
    self._opt.zero_grad() 
    return metrics

  def _apply_weight_decay(self, varibs):
    nontrivial = (self._wd_pattern != r'.*')
    if nontrivial:
      raise NotImplementedError('Non trivial weight decay')
    else:
      for var in varibs:
        var.data = (1 - self._wd) * var.data

class StreamNorm:

  def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8, device='cuda'):
    # Momentum of 0 normalizes only based on the current batch.
    # Momentum of 1 disables normalization.
    self.device = device
    self._shape = tuple(shape)
    self._momentum = momentum
    self._scale = scale
    self._eps = eps
    self.mag = None # torch.ones(shape).to(self.device) 

    self.step = 0
    self.mean = None # torch.zeros(shape).to(self.device)
    self.square_mean = None # torch.zeros(shape).to(self.device)

  def reset(self):
    self.step = 0
    self.mag = None # torch.ones_like(self.mag).to(self.device)
    self.mean = None # torch.zeros_like(self.mean).to(self.device)
    self.square_mean = None # torch.zeros_like(self.square_mean).to(self.device)

  def __call__(self, inputs):
    metrics = {}
    self.update(inputs)
    metrics['mean'] = inputs.mean()
    metrics['std'] = inputs.std()
    outputs = self.transform(inputs)
    metrics['normed_mean'] = outputs.mean()
    metrics['normed_std'] = outputs.std()
    return outputs, metrics

  def update(self, inputs):
    self.step += 1
    batch = inputs.reshape((-1,) + self._shape)
    
    mag = torch.abs(batch).mean(0) 
    if self.mag is not None:
      self.mag.data = self._momentum * self.mag.data + (1 - self._momentum) * mag 
    else:
      self.mag =  mag.clone().detach()
    
    mean = torch.mean(batch)
    if self.mean is not None:
      self.mean.data = self._momentum * self.mean.data + (1 - self._momentum) * mean 
    else:
      self.mean = mean.clone().detach()
    
    square_mean = torch.mean(batch * batch)
    if self.square_mean is not None:
      self.square_mean.data = self._momentum * self.square_mean.data + (1 - self._momentum) * square_mean 
    else:
      self.square_mean = square_mean.clone().detach()

  def transform(self, inputs):
    if self._momentum == 1:
      return inputs
    values = inputs.reshape((-1,) + self._shape)
    values /= self.mag[None] + self._eps 
    values *= self._scale
    return values.reshape(inputs.shape)

  def corrected_mean_var_std(self,):
    corr = 1 # 1 - self._momentum ** self.step # NOTE: this led to exploding values for first few iterations
    corr_mean = self.mean / corr 
    corr_var = (self.square_mean / corr) - self.mean ** 2
    corr_std = torch.sqrt(torch.maximum(corr_var, torch.zeros_like(corr_var, device=self.device)) + self._eps)
    return corr_mean, corr_var, corr_std

class RequiresGrad:

  def __init__(self, model):
    self._model = model

  def __enter__(self):
    self._model.requires_grad_(requires_grad=True)

  def __exit__(self, *args):
    self._model.requires_grad_(requires_grad=False)

class RewardEMA:
    """running mean and std"""

    def __init__(self, device, alpha=1e-2):
        self.device = device
        self.alpha = alpha
        self.range = torch.tensor([0.05, 0.95]).to(device)

    def __call__(self, x, ema_vals):
        flat_x = torch.flatten(x.detach())
        x_quantile = torch.quantile(input=flat_x, q=self.range)
        # this should be in-place operation
        ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals
        scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0)
        offset = ema_vals[0]
        return offset.detach(), scale.detach()

class ImgChLayerNorm(nn.Module):
    def __init__(self, ch, eps=1e-03):
        super(ImgChLayerNorm, self).__init__()
        self.norm = torch.nn.LayerNorm(ch, eps=eps)

    def forward(self, x):
        x = x.permute(0, 2, 3, 1)
        x = self.norm(x)
        x = x.permute(0, 3, 1, 2)
        return x