Spaces:
Sleeping
Sleeping
File size: 37,256 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
import re
import numpy as np
import tools.utils as utils
import torch.nn as nn
import torch
import torch.distributions as D
import torch.nn.functional as F
Module = nn.Module
def symlog(x):
return torch.sign(x) * torch.log(torch.abs(x) + 1.0)
def symexp(x):
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0)
def signed_hyperbolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed hyperbolic transform, inverse of signed_parabolic."""
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x
def signed_parabolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed parabolic transform, inverse of signed_hyperbolic."""
z = torch.sqrt(1 + 4 * eps * (eps + 1 + torch.abs(x))) / 2 / eps - 1 / 2 / eps
return torch.sign(x) * (torch.square(z) - 1)
class SampleDist:
def __init__(self, dist: D.Distribution, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
@property
def mean(self):
sample = self._dist.rsample((self._samples,))
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
sample = self._dist.rsample((self._samples,))
logprob = self._dist.log_prob(sample)
return -torch.mean(logprob, 0)
def sample(self):
return self._dist.rsample()
class MSEDist:
def __init__(self, mode, agg="sum"):
self._mode = mode
self._agg = agg
@property
def mean(self):
return self._mode
def mode(self):
return self._mode
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
distance = (self._mode - value) ** 2
if self._agg == "mean":
loss = distance.mean(list(range(len(distance.shape)))[2:])
elif self._agg == "sum":
loss = distance.sum(list(range(len(distance.shape)))[2:])
else:
raise NotImplementedError(self._agg)
return -loss
class SymlogDist:
def __init__(self, mode, dims, dist='mse', agg='sum', tol=1e-8):
self._mode = mode
self._dims = tuple([-x for x in range(1, dims + 1)])
self._dist = dist
self._agg = agg
self._tol = tol
self.batch_shape = mode.shape[:len(mode.shape) - dims]
self.event_shape = mode.shape[len(mode.shape) - dims:]
def mode(self):
return symexp(self._mode)
def mean(self):
return symexp(self._mode)
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
if self._dist == 'mse':
distance = (self._mode - symlog(value)) ** 2
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
elif self._dist == 'abs':
distance = torch.abs(self._mode - symlog(value))
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
else:
raise NotImplementedError(self._dist)
if self._agg == 'mean':
loss = distance.mean(self._dims)
elif self._agg == 'sum':
loss = distance.sum(self._dims)
else:
raise NotImplementedError(self._agg)
return -loss
class TwoHotDist:
def __init__(
self,
logits,
low=-20.0,
high=20.0,
transfwd=symlog,
transbwd=symexp,
):
assert logits.shape[-1] == 255
self.logits = logits
self.probs = torch.softmax(logits, -1)
self.buckets = torch.linspace(low, high, steps=255).to(logits.device)
self.width = (self.buckets[-1] - self.buckets[0]) / 255
self.transfwd = transfwd
self.transbwd = transbwd
@property
def mean(self):
_mean = self.probs * self.buckets
return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True))
@property
def mode(self):
return self.mean
# Inside OneHotCategorical, log_prob is calculated using only max element in targets
def log_prob(self, x):
x = self.transfwd(x)
# x(time, batch, 1)
below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
above = len(self.buckets) - torch.sum(
(self.buckets > x[..., None]).to(torch.int32), dim=-1
)
# this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits.
below = torch.clip(below, 0, len(self.buckets) - 1)
above = torch.clip(above, 0, len(self.buckets) - 1)
equal = below == above
dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
total = dist_to_below + dist_to_above
weight_below = dist_to_above / total
weight_above = dist_to_below / total
target = (
F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None]
+ F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
)
log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
target = target.squeeze(-2)
return (target * log_pred).sum(-1)
def log_prob_target(self, target):
log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
return (target * log_pred).sum(-1)
class OneHotDist(D.OneHotCategorical):
def __init__(self, logits=None, probs=None, unif_mix=0.99):
super().__init__(logits=logits, probs=probs)
probs = super().probs
probs = unif_mix * probs + (1 - unif_mix) * torch.ones_like(probs, device=probs.device) / probs.shape[-1]
super().__init__(probs=probs)
def mode(self):
_mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1])
return _mode.detach() + super().logits - super().logits.detach()
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
class BernoulliDist(D.Bernoulli):
def __init__(self, logits=None, probs=None):
super().__init__(logits=logits, probs=probs)
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
def static_scan_for_lambda_return(fn, inputs, start):
last = start
indices = range(inputs[0].shape[0])
indices = reversed(indices)
flag = True
for index in indices:
inp = lambda x: (_input[x].unsqueeze(0) for _input in inputs)
last = fn(last, *inp(index))
if flag:
outputs = last
flag = False
else:
outputs = torch.cat([last, outputs], dim=0)
return outputs
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
#assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
assert len(reward.shape) == len(value.shape), (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * torch.ones_like(reward, device=reward.device)
dims = list(range(len(reward.shape)))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = reward.permute(dims)
value = value.permute(dims)
pcont = pcont.permute(dims)
if bootstrap is None:
bootstrap = torch.zeros_like(value[-1], device=reward.device)
if len(bootstrap.shape) < len(value.shape):
bootstrap = bootstrap[None]
next_values = torch.cat([value[1:], bootstrap], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan_for_lambda_return(
lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg,
(inputs, pcont), bootstrap)
if axis != 0:
returns = returns.permute(dims)
return returns
def static_scan(fn, inputs, start, reverse=False, unpack=False):
last = start
indices = range(inputs[0].shape[0])
flag = True
for index in indices:
inp = lambda x: (_input[x] for _input in inputs)
if unpack:
last = fn(last, *[inp[index] for inp in inputs])
else:
last = fn(last, inp(index))
if flag:
if type(last) == type({}):
outputs = {key: [value] for key, value in last.items()}
else:
outputs = []
for _last in last:
if type(_last) == type({}):
outputs.append({key: [value] for key, value in _last.items()})
else:
outputs.append([_last])
flag = False
else:
if type(last) == type({}):
for key in last.keys():
outputs[key].append(last[key])
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key].append(last[j][key])
else:
outputs[j].append(last[j])
# Stack everything at the end
if type(last) == type({}):
for key in last.keys():
outputs[key] = torch.stack(outputs[key], dim=0)
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key] = torch.stack(outputs[j][key], dim=0)
else:
outputs[j] = torch.stack(outputs[j], dim=0)
if type(last) == type({}):
outputs = [outputs]
return outputs
class EnsembleRSSM(Module):
def __init__(
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
act='SiLU', norm='none', std_act='softplus', min_std=0.1, action_dim=None, embed_dim=1536, device='cuda',
single_obs_posterior=False, cell_input='stoch', cell_type='gru',):
super().__init__()
assert action_dim is not None
self.device = device
self._embed_dim = embed_dim
self._action_dim = action_dim
self._ensemble = ensemble
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._discrete = discrete
self._act = get_act(act)
self._norm = norm
self._std_act = std_act
self._min_std = min_std
self._cell_type = cell_type
self.cell_input = cell_input
if cell_type == 'gru':
self._cell = GRUCell(self._hidden, self._deter, norm=True, device=self.device)
else:
raise NotImplementedError(f"{cell_type} not implemented")
self.single_obs_posterior = single_obs_posterior
if discrete:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, stoch*discrete) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, stoch*discrete)
else:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, 2*stoch) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, 2*stoch)
# Layer that projects (stoch, input) to cell_state space
cell_state_input_size = getattr(self, f'get_{self.cell_input}_size')()
self._img_in = nn.Sequential(nn.Linear(cell_state_input_size + action_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
# Layer that project deter -> hidden [before projecting hidden -> stoch]
self._ensemble_img_out = nn.ModuleList([ nn.Sequential(nn.Linear(self.get_deter_size(), hidden, bias=norm != 'none'), NormLayer(norm, hidden)) for _ in range(ensemble)])
if self.single_obs_posterior:
self._obs_out = nn.Sequential(nn.Linear(embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
else:
self._obs_out = nn.Sequential(nn.Linear(deter + embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
def initial(self, batch_size):
if self._discrete:
state = dict(
logit=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
stoch=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
else:
state = dict(
mean=torch.zeros([batch_size, self._stoch], device=self.device),
std=torch.zeros([batch_size, self._stoch], device=self.device),
stoch=torch.zeros([batch_size, self._stoch], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
return state
def observe(self, embed, action, is_first, state=None):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None: state = self.initial(action.shape[0])
post, prior = static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(swap(action), swap(embed), swap(is_first)), (state, state))
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
def imagine(self, action, state=None, sample=True):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(action.shape[0])
assert isinstance(state, dict), state
action = swap(action)
prior = static_scan(self.img_step, [action, float(sample) + torch.zeros(action.shape[0])], state, unpack=True)[0]
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_stoch_size(self,):
if self._discrete:
return self._stoch * self._discrete
else:
return self._stoch
def get_deter_size(self,):
return self._cell.state_size
def get_feat_size(self,):
return self.get_deter_size() + self.get_stoch_size()
def get_stoch(self, state):
stoch = state['stoch']
if self._discrete:
shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete]
stoch = stoch.reshape(shape)
return stoch
def get_deter(self, state):
return state['deter']
def get_feat(self, state):
deter = self.get_deter(state)
stoch = self.get_stoch(state)
return torch.cat([stoch, deter], -1)
def get_dist(self, state, ensemble=False):
if ensemble:
state = self._suff_stats_ensemble(state['deter'])
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(logit.float()), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(mean, std), 1)
dist.sample = dist.rsample
return dist
def get_unif_dist(self, state):
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(torch.ones_like(logit, device=logit.device)), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(torch.zeros_like(mean, device=mean.device), torch.ones_like(std, device=std.device)), 1)
dist.sample = dist.rsample
return dist
def obs_step(self, prev_state, prev_action, embed, is_first, should_sample=True):
if is_first.any():
prev_state = { k: torch.einsum('b,b...->b...', 1.0 - is_first.float(), x) for k, x in prev_state.items() }
prev_action = torch.einsum('b,b...->b...', 1.0 - is_first.float(), prev_action)
#
prior = self.img_step(prev_state, prev_action, should_sample)
stoch, stats = self.get_post_stoch(embed, prior, should_sample)
post = {'stoch': stoch, 'deter': prior['deter'], **stats}
return post, prior
def get_post_stoch(self, embed, prior, should_sample=True):
if self.single_obs_posterior:
x = embed
else:
x = torch.cat([prior['deter'], embed], -1)
x = self._obs_out(x)
x = self._act(x)
bs = list(x.shape[:-1])
x = x.reshape([-1, x.shape[-1]])
stats = self._suff_stats_layer('_obs_dist', x)
stats = { k: v.reshape( bs + list(v.shape[1:])) for k, v in stats.items()}
dist = self.get_dist(stats)
stoch = dist.sample() if should_sample else dist.mode()
return stoch, stats
def img_step(self, prev_state, prev_action, sample=True,):
prev_state_input = getattr(self, f'get_{self.cell_input}')(prev_state)
x = torch.cat([prev_state_input, prev_action], -1)
x = self._img_in(x)
x = self._act(x)
deter = prev_state['deter']
if self._cell_type == 'gru':
x, deter = self._cell(x, [deter])
temp_state = {'deter' : deter[0] }
else:
raise NotImplementedError(f"no {self._cell_type} cell method")
deter = deter[0] # It's wrapped in a list.
stoch, stats = self.get_stoch_stats_from_deter_state(temp_state, sample)
prior = {'stoch': stoch, 'deter': deter, **stats}
return prior
def get_stoch_stats_from_deter_state(self, temp_state, sample=True):
stats = self._suff_stats_ensemble(self.get_deter(temp_state))
index = torch.randint(0, self._ensemble, ())
stats = {k: v[index] for k, v in stats.items()}
dist = self.get_dist(stats)
if sample:
stoch = dist.sample()
else:
try:
stoch = dist.mode()
except:
stoch = dist.mean
return stoch, stats
def _suff_stats_ensemble(self, inp):
bs = list(inp.shape[:-1])
inp = inp.reshape([-1, inp.shape[-1]])
stats = []
for k in range(self._ensemble):
x = self._ensemble_img_out[k](inp)
x = self._act(x)
stats.append(self._suff_stats_layer('_ensemble_img_dist', x, k=k))
stats = {
k: torch.stack([x[k] for x in stats], 0)
for k, v in stats[0].items()}
stats = {
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
for k, v in stats.items()}
return stats
def _suff_stats_layer(self, name, x, k=None):
layer = getattr(self, name)
if k is not None:
layer = layer[k]
x = layer(x)
if self._discrete:
logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete])
return {'logit': logit}
else:
mean, std = torch.chunk(x, 2, -1)
std = {
'softplus': lambda: F.softplus(std),
'sigmoid': lambda: torch.sigmoid(std),
'sigmoid2': lambda: 2 * torch.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {'mean': mean, 'std': std}
def vq_loss(self, post, prior, balance):
dim_repr = prior['output'].shape[-1]
# Vectors and codes are the same, but vectors have gradients
dyn_loss = balance * F.mse_loss(prior['output'], post['vectors'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['vectors'])
dyn_loss += balance * F.mse_loss(prior['output'], post['codes'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['codes'])
dyn_loss /= 2
vq_loss = 0.25 * F.mse_loss(post['output'], post['codes'].detach()) + F.mse_loss(post['output'].detach(), post['codes'])
loss = vq_loss + dyn_loss
return loss * dim_repr, dyn_loss * dim_repr
def kl_loss(self, post, prior, forward, balance, free, free_avg,):
kld = D.kl_divergence
sg = lambda x: {k: v.detach() for k, v in x.items()}
lhs, rhs = (prior, post) if forward else (post, prior)
mix = balance if forward else (1 - balance)
dtype = post['stoch'].dtype
device = post['stoch'].device
free_tensor = torch.tensor([free], dtype=dtype, device=device)
if balance == 0.5:
value = kld(self.get_dist(lhs), self.get_dist(rhs))
loss = torch.maximum(value, free_tensor).mean()
else:
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
if free_avg:
loss_lhs = torch.maximum(value_lhs.mean(), free_tensor)
loss_rhs = torch.maximum(value_rhs.mean(), free_tensor)
else:
loss_lhs = torch.maximum(value_lhs, free_tensor).mean()
loss_rhs = torch.maximum(value_rhs, free_tensor).mean()
loss = mix * loss_lhs + (1 - mix) * loss_rhs
return loss, value
class Encoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], symlog_inputs=False,):
super().__init__()
self.shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Encoder CNN inputs:', list(self.cnn_keys))
print('Encoder MLP inputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self._symlog_inputs = symlog_inputs
if len(self.cnn_keys) > 0:
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 3
else:
prev_depth = 2 ** (i-1) * self._cnn_depth
depth = 2 ** i * self._cnn_depth
self._conv_model.append(nn.Conv2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm,depth))
self._conv_model.append(self._act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = np.sum([shapes[k] for k in self.mlp_keys])
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=norm != 'none'))
self._mlp_model.append(NormLayer(norm, width))
self._mlp_model.append(self._act)
if len(self._mlp_model) == 0:
self._mlp_model.append(nn.Identity())
self._mlp_model = nn.Sequential(*self._mlp_model)
def forward(self, data):
key, shape = list(self.shapes.items())[0]
batch_dims = data[key].shape[:-len(shape)]
data = {
k: v.reshape((-1,) + tuple(v.shape)[len(batch_dims):])
for k, v in data.items()}
outputs = []
if self.cnn_keys:
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
if self.mlp_keys:
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
output = torch.cat(outputs, -1)
return output.reshape(batch_dims + output.shape[1:])
def _cnn(self, data):
x = torch.cat(list(data.values()), -1)
x = self._conv_model(x)
return x.reshape(tuple(x.shape[:-3]) + (-1,))
def _mlp(self, data):
x = torch.cat(list(data.values()), -1)
if self._symlog_inputs:
x = symlog(x)
x = self._mlp_model(x)
return x
class Decoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], embed_dim=1024, mlp_dist='mse', image_dist='mse'):
super().__init__()
self._embed_dim = embed_dim
self._shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Decoder CNN outputs:', list(self.cnn_keys))
print('Decoder MLP outputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self.channels = {k: self._shapes[k][0] for k in self.cnn_keys}
self._mlp_dist = mlp_dist
self._image_dist = image_dist
if len(self.cnn_keys) > 0:
self._conv_in = nn.Sequential(nn.Linear(embed_dim, 32*self._cnn_depth))
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 32*self._cnn_depth
else:
prev_depth = 2 ** (len(self._cnn_kernels) - (i - 1) - 2) * self._cnn_depth
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
act, norm = self._act, self._norm
# Last layer is dist layer
if i == len(self._cnn_kernels) - 1:
depth, act, norm = sum(self.channels.values()), nn.Identity(), 'none'
self._conv_model.append(nn.ConvTranspose2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm, depth))
self._conv_model.append(act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = embed_dim
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=self._norm != 'none'))
self._mlp_model.append(NormLayer(self._norm, width))
self._mlp_model.append(self._act)
self._mlp_model = nn.Sequential(*self._mlp_model)
for key, shape in { k : shapes[k] for k in self.mlp_keys }.items():
self.add_module(f'dense_{key}', DistLayer(width, shape, dist=self._mlp_dist))
def forward(self, features):
outputs = {}
if self.cnn_keys:
outputs.update(self._cnn(features))
if self.mlp_keys:
outputs.update(self._mlp(features))
return outputs
def _cnn(self, features):
x = self._conv_in(features)
x = x.reshape([-1, 32 * self._cnn_depth, 1, 1,])
x = self._conv_model(x)
x = x.reshape(list(features.shape[:-1]) + list(x.shape[1:]))
if len(x.shape) == 5:
means = torch.split(x, list(self.channels.values()), 2)
else:
means = torch.split(x, list(self.channels.values()), 1)
image_dist = dict(mse=lambda x : MSEDist(x), normal_unit_std=lambda x : D.Independent(D.Normal(x, 1.0), 3))[self._image_dist]
dists = { key: image_dist(mean) for (key, shape), mean in zip(self.channels.items(), means)}
return dists
def _mlp(self, features):
shapes = {k: self._shapes[k] for k in self.mlp_keys}
x = features
x = self._mlp_model(x)
dists = {}
for key, shape in shapes.items():
dists[key] = getattr(self, f'dense_{key}')(x)
return dists
class MLP(Module):
def __init__(self, in_shape, shape, layers, units, act='SiLU', norm='none', **out):
super().__init__()
self._in_shape = in_shape
if out['dist'] == 'twohot':
shape = 255
self._shape = (shape,) if isinstance(shape, int) else shape
self._layers = layers
self._units = units
self._norm = norm
self._act = get_act(act)
self._out = out
last_units = in_shape
for index in range(self._layers):
self.add_module(f'dense{index}', nn.Linear(last_units, units, bias=norm != 'none'))
self.add_module(f'norm{index}', NormLayer(norm, units))
last_units = units
self._out = DistLayer(units, shape, **out)
def forward(self, features):
x = features
x = x.reshape([-1, x.shape[-1]])
for index in range(self._layers):
x = getattr(self, f'dense{index}')(x)
x = getattr(self, f'norm{index}')(x)
x = self._act(x)
x = x.reshape(list(features.shape[:-1]) + [x.shape[-1]])
return self._out(x)
class GRUCell(Module):
def __init__(self, inp_size, size, norm=False, act='Tanh', update_bias=-1, device='cuda', **kwargs):
super().__init__()
self._inp_size = inp_size
self._size = size
self._act = get_act(act)
self._norm = norm
self._update_bias = update_bias
self.device = device
self._layer = nn.Linear(inp_size + size, 3 * size, bias=(not norm), **kwargs)
if norm:
self._norm = nn.LayerNorm(3*size)
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
return torch.zeros((batch_size), self._size, device=self.device)
@property
def state_size(self):
return self._size
def forward(self, inputs, deter_state):
"""
inputs : non-linear combination of previous stoch and action
deter_state : prev hidden state of the cell
"""
deter_state = deter_state[0] # State is wrapped in a list.
parts = self._layer(torch.cat([inputs, deter_state], -1))
if self._norm:
parts = self._norm(parts)
reset, cand, update = torch.chunk(parts, 3, -1)
reset = torch.sigmoid(reset)
cand = self._act(reset * cand)
update = torch.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * deter_state
return output, [output]
class DistLayer(Module):
def __init__(
self, in_dim, shape, dist='mse', min_std=0.1, max_std=1.0, init_std=0.0, bias=True):
super().__init__()
self._in_dim = in_dim
self._shape = shape if type(shape) in [list,tuple] else [shape]
self._dist = dist
self._min_std = min_std
self._init_std = init_std
self._max_std = max_std
self._out = nn.Linear(in_dim, int(np.prod(shape)) , bias=bias)
if dist in ('normal', 'tanh_normal', 'trunc_normal'):
self._std = nn.Linear(in_dim, int(np.prod(shape)) )
def forward(self, inputs):
out = self._out(inputs)
out = out.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
std = self._std(inputs)
std = std.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist == 'mse':
return MSEDist(out,)
if self._dist == 'normal_unit_std':
dist = D.Normal(out, 1.0)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'normal':
mean = torch.tanh(out)
std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std
dist = D.Normal(mean, std)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'binary':
out = torch.sigmoid(out)
dist = BernoulliDist(out)
return D.Independent(dist, len(self._shape))
if self._dist == 'tanh_normal':
mean = 5 * torch.tanh(out / 5)
std = F.softplus(std + self._init_std) + self._min_std
dist = utils.SquashedNormal(mean, std)
dist = D.Independent(dist, len(self._shape))
return SampleDist(dist)
if self._dist == 'trunc_normal':
mean = torch.tanh(out)
std = 2 * torch.sigmoid((std + self._init_std) / 2) + self._min_std
dist = utils.TruncatedNormal(mean, std)
return D.Independent(dist, 1)
if self._dist == 'onehot':
return OneHotDist(out.float())
if self._dist == 'twohot':
return TwoHotDist(out.float())
if self._dist == 'symlog_mse':
return SymlogDist(out, len(self._shape), 'mse')
raise NotImplementedError(self._dist)
class NormLayer(Module):
def __init__(self, name, dim=None):
super().__init__()
if name == 'none':
self._layer = None
elif name == 'layer':
assert dim != None
self._layer = nn.LayerNorm(dim)
else:
raise NotImplementedError(name)
def forward(self, features):
if self._layer is None:
return features
return self._layer(features)
def get_act(name):
if name == 'none':
return nn.Identity()
elif hasattr(nn, name):
return getattr(nn, name)()
else:
raise NotImplementedError(name)
class Optimizer:
def __init__(
self, name, parameters, lr, eps=1e-4, clip=None, wd=None,
opt='adam', wd_pattern=r'.*', use_amp=False):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
'adam': lambda: torch.optim.Adam(parameters, lr, eps=eps),
'nadam': lambda: torch.optim.Nadam(parameters, lr, eps=eps),
'adamax': lambda: torch.optim.Adamax(parameters, lr, eps=eps),
'sgd': lambda: torch.optim.SGD(parameters, lr),
'momentum': lambda: torch.optim.SGD(lr, momentum=0.9),
}[opt]()
self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
self._once = True
def __call__(self, loss, params):
params = list(params)
assert len(loss.shape) == 0 or (len(loss.shape) == 1 and loss.shape[0] == 1), (self._name, loss.shape)
metrics = {}
# Count parameters.
if self._once:
count = sum(p.numel() for p in params if p.requires_grad)
print(f'Found {count} {self._name} parameters.')
self._once = False
# Check loss.
metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy()
# Compute scaled gradient.
self._scaler.scale(loss).backward()
self._scaler.unscale_(self._opt)
# Gradient clipping.
if self._clip:
norm = torch.nn.utils.clip_grad_norm_(params, self._clip)
metrics[f'{self._name}_grad_norm'] = norm.item()
# Weight decay.
if self._wd:
self._apply_weight_decay(params)
# # Apply gradients.
self._scaler.step(self._opt)
self._scaler.update()
self._opt.zero_grad()
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = (self._wd_pattern != r'.*')
if nontrivial:
raise NotImplementedError('Non trivial weight decay')
else:
for var in varibs:
var.data = (1 - self._wd) * var.data
class StreamNorm:
def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8, device='cuda'):
# Momentum of 0 normalizes only based on the current batch.
# Momentum of 1 disables normalization.
self.device = device
self._shape = tuple(shape)
self._momentum = momentum
self._scale = scale
self._eps = eps
self.mag = None # torch.ones(shape).to(self.device)
self.step = 0
self.mean = None # torch.zeros(shape).to(self.device)
self.square_mean = None # torch.zeros(shape).to(self.device)
def reset(self):
self.step = 0
self.mag = None # torch.ones_like(self.mag).to(self.device)
self.mean = None # torch.zeros_like(self.mean).to(self.device)
self.square_mean = None # torch.zeros_like(self.square_mean).to(self.device)
def __call__(self, inputs):
metrics = {}
self.update(inputs)
metrics['mean'] = inputs.mean()
metrics['std'] = inputs.std()
outputs = self.transform(inputs)
metrics['normed_mean'] = outputs.mean()
metrics['normed_std'] = outputs.std()
return outputs, metrics
def update(self, inputs):
self.step += 1
batch = inputs.reshape((-1,) + self._shape)
mag = torch.abs(batch).mean(0)
if self.mag is not None:
self.mag.data = self._momentum * self.mag.data + (1 - self._momentum) * mag
else:
self.mag = mag.clone().detach()
mean = torch.mean(batch)
if self.mean is not None:
self.mean.data = self._momentum * self.mean.data + (1 - self._momentum) * mean
else:
self.mean = mean.clone().detach()
square_mean = torch.mean(batch * batch)
if self.square_mean is not None:
self.square_mean.data = self._momentum * self.square_mean.data + (1 - self._momentum) * square_mean
else:
self.square_mean = square_mean.clone().detach()
def transform(self, inputs):
if self._momentum == 1:
return inputs
values = inputs.reshape((-1,) + self._shape)
values /= self.mag[None] + self._eps
values *= self._scale
return values.reshape(inputs.shape)
def corrected_mean_var_std(self,):
corr = 1 # 1 - self._momentum ** self.step # NOTE: this led to exploding values for first few iterations
corr_mean = self.mean / corr
corr_var = (self.square_mean / corr) - self.mean ** 2
corr_std = torch.sqrt(torch.maximum(corr_var, torch.zeros_like(corr_var, device=self.device)) + self._eps)
return corr_mean, corr_var, corr_std
class RequiresGrad:
def __init__(self, model):
self._model = model
def __enter__(self):
self._model.requires_grad_(requires_grad=True)
def __exit__(self, *args):
self._model.requires_grad_(requires_grad=False)
class RewardEMA:
"""running mean and std"""
def __init__(self, device, alpha=1e-2):
self.device = device
self.alpha = alpha
self.range = torch.tensor([0.05, 0.95]).to(device)
def __call__(self, x, ema_vals):
flat_x = torch.flatten(x.detach())
x_quantile = torch.quantile(input=flat_x, q=self.range)
# this should be in-place operation
ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals
scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0)
offset = ema_vals[0]
return offset.detach(), scale.detach()
class ImgChLayerNorm(nn.Module):
def __init__(self, ch, eps=1e-03):
super(ImgChLayerNorm, self).__init__()
self.norm = torch.nn.LayerNorm(ch, eps=eps)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
return x |