Spaces:
Sleeping
Sleeping
File size: 7,628 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path \n",
"import os\n",
"import glob\n",
"import json\n",
"import sys\n",
"sys.path.append(str(Path(os.path.abspath('')).parent))\n",
"\n",
"import torch\n",
"import torch.distributions as D\n",
"import numpy as np\n",
"import torch.nn.functional as F\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.cm as cm\n",
"import matplotlib.animation as animation\n",
"\n",
"import wandb\n",
"from tqdm import tqdm\n",
"api = wandb.Api()\n",
"\n",
"agent_path = Path(os.path.abspath('')).parent / 'models' / 'genrl_stickman_500k_2.pt'\n",
"print(\"Model path\", agent_path)\n",
"\n",
"agent = torch.load(agent_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tools.genrl_utils import ViCLIPGlobalInstance, DOMAIN2PREDICATES\n",
"model_name = getattr(agent.cfg, 'viclip_model', 'viclip')\n",
"# Get ViCLIP\n",
"if 'viclip_global_instance' not in locals() or model_name != viclip_global_instance._model:\n",
" viclip_global_instance = ViCLIPGlobalInstance(model_name)\n",
" if not viclip_global_instance._instantiated:\n",
" print(\"Instantiating\")\n",
" viclip_global_instance.instantiate()\n",
" clip = viclip_global_instance.viclip\n",
" tokenizer = viclip_global_instance.viclip_tokenizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"\n",
"def get_vid_feat(frames, clip):\n",
" return clip.get_vid_features(frames,)\n",
"\n",
"def _frame_from_video(video):\n",
" while video.isOpened():\n",
" success, frame = video.read()\n",
" if success:\n",
" yield frame\n",
" else:\n",
" break\n",
"\n",
"v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)\n",
"v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)\n",
"def normalize(data):\n",
" return (data/255.0-v_mean)/v_std\n",
"\n",
"def denormalize(data):\n",
" return (((data * v_std) + v_mean) * 255) \n",
"\n",
"def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):\n",
" vid_list = [*vid_list[0]]\n",
" assert(len(vid_list) >= fnum)\n",
" vid_list = [cv2.resize(x, target_size) for x in vid_list]\n",
" vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]\n",
" vid_tube = np.concatenate(vid_tube, axis=1)\n",
" vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))\n",
" vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()\n",
" return vid_tube\n",
"\n",
"\n",
"def get_video_feat(frames, device=torch.device('cuda'), flip=False):\n",
" # Image\n",
" if frames.shape[1] == 1:\n",
" frames = frames.transpose(1,0,2,3,4).repeat(8, axis=0).transpose(1,0,2,3,4)\n",
"\n",
" # Short video\n",
" if frames.shape[1] == 4:\n",
" frames = frames.transpose(1,0,2,3,4).repeat(2, axis=0).transpose(1,0,2,3,4)\n",
"\n",
" k = max(frames.shape[1] // 128, 1)\n",
" frames = frames[:, ::k]\n",
" \n",
" # Horizontally flip\n",
" if flip:\n",
" frames = np.flip(frames, axis=-2)\n",
"\n",
" print(frames.shape,)\n",
" chosen_frames = frames[:, :8]\n",
" chosen_frames = frames2tensor(chosen_frames, device=device)\n",
" vid_feat = get_vid_feat(chosen_frames, clip,)\n",
" return vid_feat, chosen_frames\n",
"\n",
"VIDEO_PATH = Path(os.path.abspath('')).parent / 'assets' / 'video_samples'\n",
"video_name = 'headstand.mp4'\n",
"\n",
"video_file_path = str(VIDEO_PATH / video_name)\n",
"print(video_file_path)\n",
"video = cv2.VideoCapture(video_file_path)\n",
"frames = np.expand_dims(np.stack([ cv2.cvtColor(x, cv2.COLOR_BGR2RGB) for x in _frame_from_video(video)], axis=0), axis=0)\n",
"print('Video length:', frames.shape[1])\n",
"with torch.no_grad():\n",
" vid_feat, frames_feat = get_video_feat(frames, flip=False)\n",
"print(vid_feat.shape)\n",
"plt.imshow(frames[0,0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"video_embed = vid_feat\n",
"DENOISE = True\n",
"\n",
"T = video_embed.shape[0]\n",
"\n",
"from torchvision.transforms import transforms as vision_trans\n",
"trasnf = vision_trans.Resize(size=(64, 64), interpolation=vision_trans.InterpolationMode.NEAREST)\n",
"\n",
"wm = world_model = agent.wm\n",
"connector = agent.wm.connector\n",
"decoder = world_model.heads['decoder']\n",
"n_frames = connector.n_frames\n",
"\n",
"\n",
"with torch.no_grad():\n",
" # Get actions\n",
" video_embed = video_embed.unsqueeze(1).repeat(1,n_frames, 1).reshape(1, n_frames * T, -1)\n",
" action = wm.connector.get_action(video_embed)\n",
"\n",
" # Imagine\n",
" prior = wm.connector.video_imagine(video_embed, None, sample=False, reset_every_n_frames=False, denoise=DENOISE)\n",
" prior_recon = decoder(wm.decoder_input_fn(prior))['observation'].mean + 0.5\n",
"\n",
" # Plotting video\n",
" ims = []\n",
" fig, axes = plt.subplots(1, 1, figsize=(4, 8), frameon=False)\n",
" fig.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0)\n",
" fig.set_size_inches(4,2)\n",
"\n",
" for t in range(prior_recon.shape[1]):\n",
" toadd = []\n",
" for b in range(prior_recon.shape[0]):\n",
" ax = axes\n",
" ax.set_axis_off()\n",
" img = cv2.resize((np.clip(prior_recon[b, t].cpu().permute(1,2,0), 0, 1).numpy() *255).astype(np.uint8), (224,224))\n",
" orig_img = denormalize(frames_feat[b, t].cpu().permute(1,2,0) ).numpy().astype(np.uint8)\n",
" frame = ax.imshow(np.concatenate([orig_img, img], axis=1)) \n",
" toadd.append(frame) # add both the image and the text to the list of artists \n",
" ims.append(toadd)\n",
"\n",
" anim = animation.ArtistAnimation(fig, ims, interval=700, blit=True, repeat_delay=700, )\n",
"\n",
" # Save GIFs\n",
" writer = animation.PillowWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800,)\n",
" domain = agent.cfg.task.split('_')[0]\n",
" os.makedirs(f'videos/{domain}/video2video', exist_ok=True)\n",
" file_path = f'videos/{domain}/video2video/{video_name[:-4].replace(\" \",\"_\")}.gif'\n",
" anim.save(file_path, writer=writer, )\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.10 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "3d597f4c481aa0f25dceb95d2a0067e73c0966dcbd003d741d821a7208527ecf"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|