Spaces:
Sleeping
Sleeping
File size: 4,144 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import io
import os
from tqdm import tqdm
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
from pathlib import Path
from collections import OrderedDict
import hydra
import numpy as np
import torch
import tools.utils as utils
from tools.replay import load_episode
torch.backends.cudnn.benchmark = True
if os.name == "nt":
import msvcrt
def portable_lock(fp):
fp.seek(0)
msvcrt.locking(fp, msvcrt.LK_LOCK, 1)
def portable_unlock(fp):
fp.seek(0)
msvcrt.locking(fp, msvcrt.LK_UNLCK, 1)
else:
import fcntl
def portable_lock(fp):
fcntl.flock(fp, fcntl.LOCK_EX | fcntl.LOCK_NB)
def portable_unlock(fp):
fcntl.flock(fp, fcntl.LOCK_UN)
class Locker:
def __init__(self, lock_name):
# e.g. lock_name = "./lockfile.lck"
self.lock_name = lock_name
def __enter__(self,):
open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
self.fd = os.open(self.lock_name, open_mode)
portable_lock(self.fd)
def __exit__(self, _type, value, tb):
portable_unlock(self.fd)
os.close(self.fd)
try:
os.remove(self.lock_name)
except:
pass
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None,):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
assert int(cfg.viclip_encode) == 1, "encoding only one (video or img)"
if cfg.viclip_encode:
self.key_to_add = 'clip_video'
self.key_to_process = getattr(cfg, 'key_to_process', 'observation')
self.cfg = cfg
self.device = torch.device(cfg.device)
# create envs
task = cfg.task
self.task = task
img_size = cfg.img_size
import envs.main as envs
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, device='cuda')
self.dataset_path = Path(cfg.dataset_dir)
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
def process(self):
filenames = sorted(self.dataset_path.glob('**/*.npz'))
print(f"Found {len(filenames)} files")
episodes_to_process = {}
for idx, fname in tqdm(enumerate(filenames)):
lockname = str(fname.absolute()) + ".lck"
try:
with Locker(lockname):
episode = load_episode(fname)
# validate before continuing
if type(episode[self.key_to_add]) == np.ndarray and episode[self.key_to_add].size > 1 and episode[self.key_to_add].shape[0] == episode[self.key_to_process].shape[0]:
continue
else:
del episode[self.key_to_add]
add_data = self.train_env.process_episode(episode[self.key_to_process]) # .cpu().numpy()
if idx == 0:
print(add_data.shape)
episode[self.key_to_add] = add_data
# save episode
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with fname.open('wb') as f2:
f2.write(f1.read())
except BlockingIOError:
print(f"File busy: {str(fname)}")
continue
def start_processing(cfg, savedir, workdir):
from process_dataset import Workspace as W
root_dir = Path.cwd()
cfg.workdir = str(root_dir)
workspace = W(cfg, savedir, workdir)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot(workspace.root_dir)
workspace.process()
@hydra.main(config_path='.', config_name='process_dataset')
def main(cfg):
start_processing(cfg, None, None)
if __name__ == '__main__':
main() |