File size: 4,144 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import warnings

warnings.filterwarnings('ignore', category=DeprecationWarning)

import io
import os
from tqdm import tqdm

os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'

from pathlib import Path
from collections import OrderedDict

import hydra
import numpy as np
import torch

import tools.utils as utils
from tools.replay import load_episode

torch.backends.cudnn.benchmark = True

if os.name == "nt":
    import msvcrt

    def portable_lock(fp):
        fp.seek(0)
        msvcrt.locking(fp, msvcrt.LK_LOCK, 1)

    def portable_unlock(fp):
        fp.seek(0)
        msvcrt.locking(fp, msvcrt.LK_UNLCK, 1)
else:
    import fcntl

    def portable_lock(fp):
        fcntl.flock(fp, fcntl.LOCK_EX | fcntl.LOCK_NB)

    def portable_unlock(fp):
        fcntl.flock(fp, fcntl.LOCK_UN)


class Locker:
    def __init__(self, lock_name):
        # e.g. lock_name = "./lockfile.lck"
        self.lock_name = lock_name 

    def __enter__(self,):
        open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
        self.fd = os.open(self.lock_name, open_mode)
        portable_lock(self.fd)

    def __exit__(self, _type, value, tb):
        portable_unlock(self.fd)
        os.close(self.fd)
        try:
            os.remove(self.lock_name)
        except:
            pass

class Workspace:
    def __init__(self, cfg, savedir=None, workdir=None,):
        self.workdir = Path.cwd() if workdir is None else workdir
        print(f'workspace: {self.workdir}')

        assert int(cfg.viclip_encode) == 1, "encoding only one (video or img)"  

        if cfg.viclip_encode:
            self.key_to_add = 'clip_video'

        self.key_to_process = getattr(cfg, 'key_to_process', 'observation')

        self.cfg = cfg
        self.device = torch.device(cfg.device)

        # create envs
        task = cfg.task
        self.task = task
        img_size = cfg.img_size
        
        import envs.main as envs
        self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size,  viclip_encode=cfg.viclip_encode, device='cuda')

        self.dataset_path = Path(cfg.dataset_dir)

        self.timer = utils.Timer()
        self._global_step = 0
        self._global_episode = 0

    def process(self):
        filenames = sorted(self.dataset_path.glob('**/*.npz'))
        print(f"Found {len(filenames)} files")
        episodes_to_process = {}

        for idx, fname in tqdm(enumerate(filenames)):
            lockname = str(fname.absolute()) + ".lck"
            try:
                with Locker(lockname):
                    episode = load_episode(fname)

                    # validate before continuing
                    if type(episode[self.key_to_add]) == np.ndarray and episode[self.key_to_add].size > 1 and episode[self.key_to_add].shape[0] == episode[self.key_to_process].shape[0]:
                        continue
                    else:
                        del episode[self.key_to_add]

                    add_data = self.train_env.process_episode(episode[self.key_to_process]) # .cpu().numpy()
                    if idx == 0:
                        print(add_data.shape)
                    episode[self.key_to_add] = add_data

                    # save episode
                    with io.BytesIO() as f1:
                        np.savez_compressed(f1, **episode)
                        f1.seek(0)
                        with fname.open('wb') as f2:
                            f2.write(f1.read())
            except BlockingIOError:
                print(f"File busy: {str(fname)}")
                continue


def start_processing(cfg, savedir, workdir):
    from process_dataset import Workspace as W
    root_dir = Path.cwd()
    cfg.workdir = str(root_dir)
    workspace = W(cfg, savedir, workdir)
    workspace.root_dir = root_dir
    snapshot = workspace.root_dir / 'last_snapshot.pt'
    if snapshot.exists():
        print(f'resuming: {snapshot}')
        workspace.load_snapshot(workspace.root_dir)
    workspace.process()

@hydra.main(config_path='.', config_name='process_dataset')
def main(cfg):
    start_processing(cfg, None, None)

if __name__ == '__main__':
    main()