mazpie's picture
Initial commit
2d9a728
raw
history blame
4.98 kB
import os
import torch
import torch.distributed as dist
import logging
try:
import deepspeed
except Exception as e:
print(e)
print("deepspeed is not installed!!!")
import datetime
from datetime import timedelta
logger = logging.getLogger(__name__)
def setup_for_distributed(is_master):
import warnings
builtin_warn = warnings.warn
def warn(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_warn(*args, **kwargs)
# Log warnings only once
warnings.warn = warn
warnings.simplefilter("once", UserWarning)
if not is_master:
logging.disable()
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def is_port_in_use(port):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
# job started by torch.distributed.launch
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
# local rank on the current node / global rank
local_rank = int(os.environ['SLURM_LOCALID'])
global_rank = int(os.environ['SLURM_PROCID'])
# number of processes / GPUs per node
world_size = int(os.environ["SLURM_NNODES"]) * \
int(os.environ["SLURM_TASKS_PER_NODE"][0])
print(world_size)
args.rank = global_rank
args.gpu = local_rank
args.world_size = world_size
else:
logger.info('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
if "tcp" in args.dist_url: # in slurm, multiple program runs in a single node
dist_port = int(args.dist_url.split(":")[-1])
while is_port_in_use(dist_port):
dist_port += 10
args.dist_url = ":".join(args.dist_url.split(":")[:-1] + [str(dist_port)])
logger.info('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url))
if "SLURM_JOB_ID" in os.environ:
logger.info(f"SLURM_JOB_ID {os.environ['SLURM_JOB_ID']}")
if hasattr(args, "deepspeed") and args.deepspeed.enable:
deepspeed.init_distributed(
dist_backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank, timeout=datetime.timedelta(seconds=7200)
)
else:
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank, timeout=timedelta(minutes=60))
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
# Copyright (c) Facebook, Inc. and its affiliates.
# copied from https://github.com/facebookresearch/vissl/blob/master/vissl/utils/distributed_gradients.py
class GatherLayer(torch.autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
dist.all_reduce(all_gradients)
return all_gradients[dist.get_rank()]
# copied from megavlt
def gather_tensor_along_batch_with_backward(tensor, dim=0):
world_size = get_world_size()
if world_size < 2:
return tensor
tensor_list = GatherLayer.apply(tensor)
tensor_list = torch.cat(tensor_list, dim=dim)
return tensor_list
@torch.no_grad()
def gather_tensor_along_batch(tensor, dim=0):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
world_size = get_world_size()
if world_size < 2:
return tensor
with torch.no_grad():
tensor_list = []
for _ in range(world_size):
tensor_list.append(torch.zeros_like(tensor))
dist.all_gather(tensor_list, tensor)
tensor_list = torch.cat(tensor_list, dim=dim)
return tensor_list