from pysolr import Solr import os import csv from sentence_transformers import SentenceTransformer, util import torch from get_keywords import get_keywords import os """ This function creates top 15 articles from Solr and saves them in a csv file Input: query: str num_articles: int keyword_type: str (openai, rake, or na) Output: path to csv file """ def save_solr_articles_full(query: str, num_articles=15, keyword_type="openai") -> str: keywords = get_keywords(query, keyword_type) if keyword_type == "na": keywords = query return save_solr_articles(keywords, num_articles) """ Removes spaces and newlines from text Input: text: str Output: text: str """ def remove_spaces_newlines(text: str) -> str: text = text.replace('\n', ' ') text = text.replace(' ', ' ') return text # truncates long articles to 1500 words def truncate_article(text: str) -> str: split = text.split() if len(split) > 1500: split = split[:1500] text = ' '.join(split) return text """ Searches Solr for articles based on keywords and saves them in a csv file Input: keywords: str num_articles: int Output: path to csv file Minor details: Removes duplicate articles to start with. Articles with dead urls are removed since those articles are often wierd. Articles with titles that start with five starting words are removed. they are usually duplicates with minor changes. If one of title, uuid, cleaned_content, url are missing the article is skipped. """ def save_solr_articles(keywords: str, num_articles=15) -> str: solr_key = os.getenv("SOLR_KEY") SOLR_ARTICLES_URL = f"https://website:{solr_key}@solr.machines.globalhealthwatcher.org:8080/solr/articles/" solr = Solr(SOLR_ARTICLES_URL, verify=False) # No duplicates fq = ['-dups:0'] query = f'text:({keywords})' + " AND " + "dead_url:(false)" # Get top 2*num_articles articles and then remove misformed or duplicate articles outputs = solr.search(query, fq=fq, sort="score desc", rows=num_articles * 2) article_count = 0 save_path = os.path.join("data", "articles.csv") if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) with open(save_path, 'w', newline='') as csvfile: fieldnames = ['title', 'uuid', 'content', 'url', 'domain'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames, quoting=csv.QUOTE_NONNUMERIC) writer.writeheader() title_five_words = set() for d in outputs.docs: if article_count == num_articles: break # skip if title returns a keyerror if 'title' not in d or 'uuid' not in d or 'cleaned_content' not in d or 'url' not in d: continue title_cleaned = remove_spaces_newlines(d['title']) split = title_cleaned.split() # skip if title is a duplicate if not len(split) < 5: five_words = title_cleaned.split()[:5] five_words = ' '.join(five_words) if five_words in title_five_words: continue title_five_words.add(five_words) article_count += 1 cleaned_content = remove_spaces_newlines(d['cleaned_content']) cleaned_content = truncate_article(cleaned_content) domain = "" if 'domain' not in d: domain = "Not Specified" else: domain = d['domain'] print(domain) writer.writerow({'title': title_cleaned, 'uuid': d['uuid'], 'content': cleaned_content, 'url': d['url'], 'domain': domain}) return save_path def save_embedding_base_articles(query, article_embeddings, titles, contents, uuids, urls, num_articles=15): bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1') query_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_embedding, article_embeddings, top_k=15) hits = hits[0] corpus_ids = [item['corpus_id'] for item in hits] r_contents = [contents[idx] for idx in corpus_ids] r_titles = [titles[idx] for idx in corpus_ids] r_uuids = [uuids[idx] for idx in corpus_ids] r_urls = [urls[idx] for idx in corpus_ids] save_path = os.path.join("data", "articles.csv") if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) with open(save_path, 'w', newline='', encoding="utf-8") as csvfile: fieldNames = ['title', 'uuid', 'content', 'url'] writer = csv.DictWriter(csvfile, fieldnames=fieldNames, quoting=csv.QUOTE_NONNUMERIC) writer.writeheader() for i in range(num_articles): writer.writerow({'title': r_titles[i], 'uuid': r_uuids[i], 'content': r_contents[i], 'url': r_urls[i]}) return save_path