File size: 46,370 Bytes
8fd2f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import (
    BaseOutput,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
import random


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import I2VGenXLPipeline
        >>> from diffusers.utils import export_to_gif, load_image

        >>> pipeline = I2VGenXLPipeline.from_pretrained(
        ...     "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16"
        ... )
        >>> pipeline.enable_model_cpu_offload()

        >>> image_url = (
        ...     "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
        ... )
        >>> image = load_image(image_url).convert("RGB")

        >>> prompt = "Papers were floating in the air on a table in the library"
        >>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
        >>> generator = torch.manual_seed(8888)

        >>> frames = pipeline(
        ...     prompt=prompt,
        ...     image=image,
        ...     num_inference_steps=50,
        ...     negative_prompt=negative_prompt,
        ...     guidance_scale=9.0,
        ...     generator=generator,
        ... ).frames[0]
        >>> video_path = export_to_gif(frames, "i2v.gif")
        ```
"""


@dataclass
class I2VGenXLPipelineOutput(BaseOutput):
    r"""
     Output class for image-to-video pipeline.

     Args:
         frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
             List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
             denoised
     PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
    `(batch_size, num_frames, channels, height, width)`
    """

    frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents


def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError(
            "Could not access latents of provided encoder_output")


class I2VGenXLPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
):
    r"""
    Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/).

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`I2VGenXLUNet`]):
            A [`I2VGenXLUNet`] to denoise the encoded video latents.
        scheduler ([`DDIMScheduler`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        image_encoder: CLIPVisionModelWithProjection,
        feature_extractor: CLIPImageProcessor,
        unet: I2VGenXLUNet,
        scheduler: DDIMScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            unet=unet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (
            len(self.vae.config.block_out_channels) - 1)
        # `do_resize=False` as we do custom resizing.
        self.video_processor = VideoProcessor(
            vae_scale_factor=self.vae_scale_factor, do_resize=False)

    @property
    def guidance_scale(self):
        return self._guidance_scale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    def encode_prompt(
        self,
        prompt,
        device,
        num_videos_per_prompt,
        negative_prompt=None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_videos_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(
                prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(
                    prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(
            dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            bs_embed * num_videos_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if self.do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            # Apply clip_skip to negative prompt embeds
            if clip_skip is None:
                negative_prompt_embeds = self.text_encoder(
                    uncond_input.input_ids.to(device),
                    attention_mask=attention_mask,
                )
                negative_prompt_embeds = negative_prompt_embeds[0]
            else:
                negative_prompt_embeds = self.text_encoder(
                    uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                negative_prompt_embeds = negative_prompt_embeds[-1][-(
                    clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm(
                    negative_prompt_embeds)

        if self.do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_videos_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_videos_per_prompt, seq_len, -1)

        return prompt_embeds, negative_prompt_embeds

    def _encode_image(self, image, device, num_videos_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.video_processor.pil_to_numpy(image)
            image = self.video_processor.numpy_to_pt(image)

            # Normalize the image with CLIP training stats.
            image = self.feature_extractor(
                images=image,
                do_normalize=True,
                do_center_crop=False,
                do_resize=False,
                do_rescale=False,
                return_tensors="pt",
            ).pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeddings = self.image_encoder(image).image_embeds
        image_embeddings = image_embeddings.unsqueeze(1)

        # duplicate image embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = image_embeddings.shape
        image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
        image_embeddings = image_embeddings.view(
            bs_embed * num_videos_per_prompt, seq_len, -1)

        if self.do_classifier_free_guidance:
            negative_image_embeddings = torch.zeros_like(image_embeddings)
            image_embeddings = torch.cat(
                [negative_image_embeddings, image_embeddings])

        return image_embeddings

    def decode_latents(self, latents, decode_chunk_size=None):
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(
            batch_size * num_frames, channels, height, width)

        if decode_chunk_size is not None:
            frames = []
            for i in range(0, latents.shape[0], decode_chunk_size):
                frame = self.vae.decode(
                    latents[i: i + decode_chunk_size]).sample
                frames.append(frame)
            image = torch.cat(frames, dim=0)
        else:
            image = self.vae.decode(latents).sample

        decode_shape = (batch_size, num_frames, -1) + image.shape[2:]
        video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4)

        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(
            self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        image,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if (
            not isinstance(image, torch.Tensor)
            and not isinstance(image, PIL.Image.Image)
            and not isinstance(image, list)
        ):
            raise ValueError(
                "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
                f" {type(image)}"
            )

    def prepare_image_latents(
        self,
        image,
        device,
        num_frames,
        num_videos_per_prompt,
    ):
        image = image.to(device=device)
        image_latents = self.vae.encode(image).latent_dist.sample()
        image_latents = image_latents * self.vae.config.scaling_factor

        # Add frames dimension to image latents
        image_latents = image_latents.unsqueeze(2)

        # Append a position mask for each subsequent frame
        # after the intial image latent frame
        frame_position_mask = []
        for frame_idx in range(num_frames - 1):
            scale = (frame_idx + 1) / (num_frames - 1)
            frame_position_mask.append(
                torch.ones_like(image_latents[:, :, :1]) * scale)
        if frame_position_mask:
            frame_position_mask = torch.cat(frame_position_mask, dim=2)
            image_latents = torch.cat(
                [image_latents, frame_position_mask], dim=2)

        # duplicate image_latents for each generation per prompt, using mps friendly method
        image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1)

        if self.do_classifier_free_guidance:
            image_latents = torch.cat([image_latents] * 2)

        return image_latents

    # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(
            int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    # Similar to image, we need to prepare the latents for the video.
    def prepare_video_latents(
        self, video, timestep, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        video = video.to(device=device, dtype=dtype)
        is_long = video.shape[2] > 16

        # change from (b, c, f, h, w) -> (b * f, c, w, h)
        bsz, channel, frames, width, height = video.shape
        video = video.permute(0, 2, 1, 3, 4).reshape(
            bsz * frames, channel, width, height)

        if video.shape[1] == 4:
            init_latents = video
        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )
            elif isinstance(generator, list):
                init_latents = [
                    retrieve_latents(self.vae.encode(
                        video[i: i + 1]), generator=generator[i])
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                if not is_long:
                    # 1 step encoding
                    init_latents = retrieve_latents(
                        self.vae.encode(video), generator=generator)
                else:
                    # chunk by chunk encoding. for low-memory consumption.
                    video_list = torch.chunk(
                        video, video.shape[0] // 16, dim=0)
                    with torch.no_grad():
                        init_latents = []
                        for video_chunk in video_list:
                            video_chunk = retrieve_latents(
                                self.vae.encode(video_chunk), generator=generator)
                            init_latents.append(video_chunk)
                        init_latents = torch.cat(init_latents, dim=0)
                    # torch.cuda.empty_cache()

            init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator,
                             device=device, dtype=dtype)

        latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = latents[None, :].reshape(
            (bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4)

        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        # Now image can be either a single image or a list of images (when randomized blending is enalbled).
        image: Union[List[PipelineImageInput], PipelineImageInput] = None,
        video: Union[List[np.ndarray], torch.Tensor] = None,
        strength: float = 0.97,
        overlap_size: int = 0,
        chunk_size: int = 38,
        height: Optional[int] = 720,
        width: Optional[int] = 1280,
        target_fps: Optional[int] = 38,
        num_frames: int = 38,
        num_inference_steps: int = 50,
        guidance_scale: float = 9.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        num_videos_per_prompt: Optional[int] = 1,
        decode_chunk_size: Optional[int] = 1,
        generator: Optional[Union[torch.Generator,
                                  List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = 1,
    ):
        r"""
        The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`].

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
                Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
                [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
            video (`List[np.ndarray]` or `torch.Tensor`):
                Video to guide video enhancement.
            strength (`float`, *optional*, defaults to 0.97):
                Indicates extent to transform the reference `video`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
            overlap_size (`int`, *optional*, defaults to 0):
                This parameter is used in randomized blending, when it is enabled.
                It defines the size of overlap between neighbouring chunks. 
            chunk_size (`int`, *optional*, defaults to 38):
                This parameter is used in randomized blending, when it is enabled.
                It defines the number of frames we will enhance during each chunk of randomized blending.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            target_fps (`int`, *optional*):
                Frames per second. The rate at which the generated images shall be exported to a video after
                generation. This is also used as a "micro-condition" while generation.
            num_frames (`int`, *optional*):
                The number of video frames to generate.
            num_inference_steps (`int`, *optional*):
                The number of denoising steps.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            num_videos_per_prompt (`int`, *optional*):
                The number of images to generate per prompt.
            decode_chunk_size (`int`, *optional*):
                The number of frames to decode at a time. The higher the chunk size, the higher the temporal
                consistency between frames, but also the higher the memory consumption. By default, the decoder will
                decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.

        Examples:

        Returns:
            [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, image, height, width,
                          negative_prompt, prompt_embeds, negative_prompt_embeds)

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        self._guidance_scale = guidance_scale

        # 3.1 Encode input text prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_videos_per_prompt,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            clip_skip=clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        # 3.2 Encode image prompt
        # 3.2.1 Image encodings.
        # https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114
        # As now we can have a list of images (when randomized blending), we encode each image separately as before.
        image_embeddings_list = []
        for img in image:
            cropped_image = _center_crop_wide(img, (width, width))
            cropped_image = _resize_bilinear(
                cropped_image, (self.feature_extractor.crop_size["width"],
                                self.feature_extractor.crop_size["height"])
            )
            image_embeddings = self._encode_image(
                cropped_image, device, num_videos_per_prompt)
            image_embeddings_list.append(image_embeddings)

        # 3.2.2 Image latents.
        # As now we can have a list of images (when randomized blending), we encode each image separately as before.
        image_latents_list = []
        for img in image:
            resized_image = _center_crop_wide(img, (width, height))
            img = self.video_processor.preprocess(resized_image).to(
                device=device, dtype=image_embeddings_list[0].dtype)
            image_latents = self.prepare_image_latents(
                img,
                device=device,
                num_frames=num_frames,
                num_videos_per_prompt=num_videos_per_prompt,
            )
            image_latents_list.append(image_latents)

        # 3.3 Prepare additional conditions for the UNet.
        if self.do_classifier_free_guidance:
            fps_tensor = torch.tensor([target_fps, target_fps]).to(device)
        else:
            fps_tensor = torch.tensor([target_fps]).to(device)
        fps_tensor = fps_tensor.repeat(
            batch_size * num_videos_per_prompt, 1).ravel()

        # 3.4 Preprocess video, similar to images.
        video = self.video_processor.preprocess_video(video).to(
            device=device, dtype=image_embeddings_list[0].dtype)
        num_images_per_prompt = 1

        # 4. Prepare timesteps. This will be used for modified SDEdit approach.
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps, strength, device)
        latent_timestep = timesteps[:1].repeat(
            batch_size * num_images_per_prompt)

        # 5. Prepare latent variables. Now we get latents for input video.
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_video_latents(
            video,
            latent_timestep,
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - \
            num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latents_denoised = torch.empty_like(latents)

                CHUNK_START = 0
                # Each chunk must have a corresponding 1st frame
                for idx in range(len(image_latents_list)):
                    latents_chunk = latents[:, :,
                                            CHUNK_START:CHUNK_START + chunk_size]

                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat(
                        [latents_chunk] * 2) if self.do_classifier_free_guidance else latents_chunk
                    latent_model_input = self.scheduler.scale_model_input(
                        latent_model_input, t)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        fps=fps_tensor,
                        image_latents=image_latents_list[idx],
                        image_embeddings=image_embeddings_list[idx],
                        cross_attention_kwargs=cross_attention_kwargs,
                        return_dict=False,
                    )[0]

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(
                            2)
                        noise_pred = noise_pred_uncond + guidance_scale * \
                            (noise_pred_text - noise_pred_uncond)

                    # reshape latents_chunk
                    batch_size, channel, frames, width, height = latents_chunk.shape
                    latents_chunk = latents_chunk.permute(0, 2, 1, 3, 4).reshape(
                        batch_size * frames, channel, width, height)
                    noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(
                        batch_size * frames, channel, width, height)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents_chunk = self.scheduler.step(
                        noise_pred, t, latents_chunk, **extra_step_kwargs).prev_sample

                    # reshape latents back
                    latents_chunk = latents_chunk[None, :].reshape(
                        batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4)

                    # Make sure random_offset is set correctly.
                    if CHUNK_START == 0:
                        random_offset = 0
                    else:
                        if overlap_size != 0:
                            random_offset = random.randint(0, overlap_size - 1)
                        else:
                            random_offset = 0

                    # Apply Randomized Blending.
                    latents_denoised[:, :, CHUNK_START + random_offset:CHUNK_START +
                                     chunk_size] = latents_chunk[:, :, random_offset:]
                    CHUNK_START += chunk_size - overlap_size

                latents = latents_denoised

                if CHUNK_START + overlap_size > latents_denoised.shape[2]:
                    raise NotImplementedError(f"Video of size={latents_denoised.shape[2]} is not dividable into chunks "
                                              f"with size={chunk_size} and overlap={overlap_size}")

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # 8. Post processing
        if output_type == "latent":
            video = latents
        else:
            video_tensor = self.decode_latents(
                latents, decode_chunk_size=decode_chunk_size)
            video = self.video_processor.postprocess_video(
                video=video_tensor, output_type=output_type)

        # 9. Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return I2VGenXLPipelineOutput(frames=video)


# The following utilities are taken and adapted from
# https://github.com/ali-vilab/i2vgen-xl/blob/main/utils/transforms.py.


def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]):
    if isinstance(image, list) and isinstance(image[0], torch.Tensor):
        image = torch.cat(image, 0)

    if isinstance(image, torch.Tensor):
        if image.ndim == 3:
            image = image.unsqueeze(0)

        image_numpy = VaeImageProcessor.pt_to_numpy(image)
        image_pil = VaeImageProcessor.numpy_to_pil(image_numpy)
        image = image_pil

    return image


def _resize_bilinear(
    image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int]
):
    # First convert the images to PIL in case they are float tensors (only relevant for tests now).
    image = _convert_pt_to_pil(image)

    if isinstance(image, list):
        image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image]
    else:
        image = image.resize(resolution, PIL.Image.BILINEAR)
    return image


def _center_crop_wide(
    image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int]
):
    # First convert the images to PIL in case they are float tensors (only relevant for tests now).
    image = _convert_pt_to_pil(image)

    if isinstance(image, list):
        scale = min(image[0].size[0] / resolution[0],
                    image[0].size[1] / resolution[1])
        image = [u.resize((round(u.width // scale), round(u.height //
                          scale)), resample=PIL.Image.BOX) for u in image]

        # center crop
        x1 = (image[0].width - resolution[0]) // 2
        y1 = (image[0].height - resolution[1]) // 2
        image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1]))
                 for u in image]
        return image
    else:
        scale = min(image.size[0] / resolution[0],
                    image.size[1] / resolution[1])
        image = image.resize((round(image.width // scale),
                             round(image.height // scale)), resample=PIL.Image.BOX)
        x1 = (image.width - resolution[0]) // 2
        y1 = (image.height - resolution[1]) // 2
        image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1]))
        return image