File size: 23,146 Bytes
8fd2f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import torch
import torch.nn as nn
from typing import List, Optional, Union
from models.svd.sgm.util import default
from models.svd.sgm.modules.video_attention import SpatialVideoTransformer
from models.svd.sgm.modules.diffusionmodules.openaimodel import *
from models.diffusion.video_model import VideoResBlock, VideoUNet
from einops import repeat, rearrange
from models.svd.sgm.modules.diffusionmodules.wrappers import OpenAIWrapper


class Merger(nn.Module):
    """
    Merges the controlnet latents with the conditioning embedding (encoding of control frames).

    """

    def __init__(self, merge_mode: str = "addition", input_channels=0, frame_expansion="last_frame") -> None:
        super().__init__()
        self.merge_mode = merge_mode
        self.frame_expansion = frame_expansion

    def forward(self, x, condition_signal, num_video_frames, num_video_frames_conditional):
        x = rearrange(x, "(B F) C H W -> B F C H W", F=num_video_frames)

        condition_signal = rearrange(
            condition_signal, "(B F) C H W -> B F C H W", B=x.shape[0])

        if x.shape[1] - condition_signal.shape[1] > 0:
            if self.frame_expansion == "last_frame":
                fillup_latent = repeat(
                    condition_signal[:, -1], "B C H W -> B F C H W", F=x.shape[1] - condition_signal.shape[1])
            elif self.frame_expansion == "zero":
                fillup_latent = torch.zeros(
                    (x.shape[0], num_video_frames-num_video_frames_conditional, *x.shape[2:]), device=x.device, dtype=x.dtype)

            if self.frame_expansion != "none":
                condition_signal = torch.cat(
                    [condition_signal, fillup_latent], dim=1)

        if self.merge_mode == "addition":
            out = x + condition_signal
        else:
            raise NotImplementedError(
                f"Merging mode {self.merge_mode} not implemented.")

        out = rearrange(out, "B F C H W -> (B F) C H W")
        return out


class ControlNetConditioningEmbedding(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int] = (16, 32, 96, 256),
        downsample: bool = True,
        final_3d_conv: bool = False,
        zero_init: bool = True,
        use_controlnet_mask: bool = False,
        use_normalization: bool = False,
    ):
        super().__init__()

        self.final_3d_conv = final_3d_conv
        self.conv_in = nn.Conv2d(
            conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
        if final_3d_conv:
            print("USING 3D CONV in ControlNET")

        self.blocks = nn.ModuleList([])
        if use_normalization:
            self.norms = nn.ModuleList([])
        self.use_normalization = use_normalization

        stride = 2 if downsample else 1

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(
                nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            if use_normalization:
                self.norms.append(nn.LayerNorm((channel_in)))
            self.blocks.append(
                nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=stride))
            if use_normalization:
                self.norms.append(nn.LayerNorm((channel_out)))

        self.conv_out = zero_module(
            nn.Conv2d(
                block_out_channels[-1]+int(use_controlnet_mask), conditioning_embedding_channels, kernel_size=3, padding=1), reset=zero_init
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        if self.use_normalization:
            for block, norm in zip(self.blocks, self.norms):
                embedding = block(embedding)
                embedding = rearrange(embedding, " ... C W H -> ... W H C")
                embedding = norm(embedding)
                embedding = rearrange(embedding, "... W H C -> ... C W H")
                embedding = F.silu(embedding)
        else:
            for block in self.blocks:
                embedding = block(embedding)
                embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)
        return embedding


class ControlNet(nn.Module):

    def __init__(
        self,
        in_channels: int,
        model_channels: int,
        out_channels: int,
        num_res_blocks: int,
        attention_resolutions: Union[List[int], int],
        dropout: float = 0.0,
        channel_mult: List[int] = (1, 2, 4, 8),
        conv_resample: bool = True,
        dims: int = 2,
        num_classes: Optional[Union[int, str]] = None,
        use_checkpoint: bool = False,
        num_heads: int = -1,
        num_head_channels: int = -1,
        num_heads_upsample: int = -1,
        use_scale_shift_norm: bool = False,
        resblock_updown: bool = False,
        transformer_depth: Union[List[int], int] = 1,
        transformer_depth_middle: Optional[int] = None,
        context_dim: Optional[int] = None,
        time_downup: bool = False,
        time_context_dim: Optional[int] = None,
        extra_ff_mix_layer: bool = False,
        use_spatial_context: bool = False,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        spatial_transformer_attn_type: str = "softmax",
        video_kernel_size: Union[int, List[int]] = 3,
        use_linear_in_transformer: bool = False,
        adm_in_channels: Optional[int] = None,
        disable_temporal_crossattention: bool = False,
        max_ddpm_temb_period: int = 10000,
        conditioning_embedding_out_channels: Optional[Tuple[int]] = (
            16, 32, 96, 256),
        condition_encoder: str = "",
        use_controlnet_mask: bool = False,
        downsample_controlnet_cond: bool = True,
        use_image_encoder_normalization: bool = False,
        zero_conv_mode: str = "Identity",
        frame_expansion: str = "none",
        merging_mode: str = "addition",
    ):
        super().__init__()
        assert zero_conv_mode == "Identity", "Zero convolution not implemented"

        assert context_dim is not None

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1

        if num_head_channels == -1:
            assert num_heads != -1

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        transformer_depth_middle = default(
            transformer_depth_middle, transformer_depth[-1]
        )

        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.dims = dims
        self.use_scale_shift_norm = use_scale_shift_norm
        self.resblock_updown = resblock_updown
        self.transformer_depth = transformer_depth
        self.transformer_depth_middle = transformer_depth_middle
        self.context_dim = context_dim
        self.time_downup = time_downup
        self.time_context_dim = time_context_dim
        self.extra_ff_mix_layer = extra_ff_mix_layer
        self.use_spatial_context = use_spatial_context
        self.merge_strategy = merge_strategy
        self.merge_factor = merge_factor
        self.spatial_transformer_attn_type = spatial_transformer_attn_type
        self.video_kernel_size = video_kernel_size
        self.use_linear_in_transformer = use_linear_in_transformer
        self.adm_in_channels = adm_in_channels
        self.disable_temporal_crossattention = disable_temporal_crossattention
        self.max_ddpm_temb_period = max_ddpm_temb_period

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "timestep":
                self.label_emb = nn.Sequential(
                    Timestep(model_channels),
                    nn.Sequential(
                        linear(model_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    ),
                )

            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
                        linear(adm_in_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    )
                )
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1

        def get_attention_layer(
            ch,
            num_heads,
            dim_head,
            depth=1,
            context_dim=None,
            use_checkpoint=False,
            disabled_sa=False,
        ):
            return SpatialVideoTransformer(
                ch,
                num_heads,
                dim_head,
                depth=depth,
                context_dim=context_dim,
                time_context_dim=time_context_dim,
                dropout=dropout,
                ff_in=extra_ff_mix_layer,
                use_spatial_context=use_spatial_context,
                merge_strategy=merge_strategy,
                merge_factor=merge_factor,
                checkpoint=use_checkpoint,
                use_linear=use_linear_in_transformer,
                attn_mode=spatial_transformer_attn_type,
                disable_self_attn=disabled_sa,
                disable_temporal_crossattention=disable_temporal_crossattention,
                max_time_embed_period=max_ddpm_temb_period,
            )

        def get_resblock(
            merge_factor,
            merge_strategy,
            video_kernel_size,
            ch,
            time_embed_dim,
            dropout,
            out_ch,
            dims,
            use_checkpoint,
            use_scale_shift_norm,
            down=False,
            up=False,
        ):
            return VideoResBlock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                channels=ch,
                emb_channels=time_embed_dim,
                dropout=dropout,
                out_channels=out_ch,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
                down=down,
                up=up,
            )

        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
                        out_ch=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels

                    layers.append(
                        get_attention_layer(
                            ch,
                            num_heads,
                            dim_head,
                            depth=transformer_depth[level],
                            context_dim=context_dim,
                            use_checkpoint=use_checkpoint,
                            disabled_sa=False,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                ds *= 2
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
                            out_ch=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(
                            ch,
                            conv_resample,
                            dims=dims,
                            out_channels=out_ch,
                            third_down=time_downup,
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)

                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels

        self.middle_block = TimestepEmbedSequential(
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                out_ch=None,
                dropout=dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            get_attention_layer(
                ch,
                num_heads,
                dim_head,
                depth=transformer_depth_middle,
                context_dim=context_dim,
                use_checkpoint=use_checkpoint,
            ),
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                out_ch=None,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.merger = Merger(
            merge_mode=merging_mode, input_channels=model_channels, frame_expansion=frame_expansion)

        conditioning_channels = 3 if downsample_controlnet_cond else 4
        block_out_channels = (320, 640, 1280, 1280)

        self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            conditioning_channels=conditioning_channels,
            block_out_channels=conditioning_embedding_out_channels,
            downsample=downsample_controlnet_cond,
            final_3d_conv=condition_encoder.endswith("3DConv"),
            use_controlnet_mask=use_controlnet_mask,
            use_normalization=use_image_encoder_normalization,
        )

    def forward(
        self,
        x: th.Tensor,
        timesteps: th.Tensor,
        controlnet_cond: th.Tensor,
        context: Optional[th.Tensor] = None,
        y: Optional[th.Tensor] = None,
        time_context: Optional[th.Tensor] = None,
        num_video_frames: Optional[int] = None,
        num_video_frames_conditional: Optional[int] = None,
        image_only_indicator: Optional[th.Tensor] = None,
    ):
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
        hs = []
        t_emb = timestep_embedding(
            timesteps, self.model_channels, repeat_only=False).to(x.dtype)

        emb = self.time_embed(t_emb)

        # TODO restrict y to [:self.num_frames] (conditonal frames)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)

        h = x
        for idx, module in enumerate(self.input_blocks):
            h = module(
                h,
                emb,
                context=context,
                image_only_indicator=image_only_indicator,
                time_context=time_context,
                num_video_frames=num_video_frames,
            )
            if idx == 0:
                h = self.merger(h, controlnet_cond, num_video_frames=num_video_frames,
                                num_video_frames_conditional=num_video_frames_conditional)

            hs.append(h)
        h = self.middle_block(
            h,
            emb,
            context=context,
            image_only_indicator=image_only_indicator,
            time_context=time_context,
            num_video_frames=num_video_frames,
        )

        # 5. Control net blocks

        down_block_res_samples = hs

        mid_block_res_sample = h

        return (down_block_res_samples, mid_block_res_sample)

    @classmethod
    def from_unet(cls,
                  model: OpenAIWrapper,
                  merging_mode: str = "addition",
                  zero_conv_mode: str = "Identity",
                  frame_expansion: str = "none",
                  downsample_controlnet_cond: bool = True,
                  use_image_encoder_normalization: bool = False,
                  use_controlnet_mask: bool = False,
                  condition_encoder: str = "",
                  conditioning_embedding_out_channels: List[int] = None,

                  ):

        unet: VideoUNet = model.diffusion_model

        controlnet = cls(in_channels=unet.in_channels,
                         model_channels=unet.model_channels,
                         out_channels=unet.out_channels,
                         num_res_blocks=unet.num_res_blocks,
                         attention_resolutions=unet.attention_resolutions,
                         dropout=unet.dropout,
                         channel_mult=unet.channel_mult,
                         conv_resample=unet.conv_resample,
                         dims=unet.dims,
                         num_classes=unet.num_classes,
                         use_checkpoint=unet.use_checkpoint,
                         num_heads=unet.num_heads,
                         num_head_channels=unet.num_head_channels,
                         num_heads_upsample=unet.num_heads_upsample,
                         use_scale_shift_norm=unet.use_scale_shift_norm,
                         resblock_updown=unet.resblock_updown,
                         transformer_depth=unet.transformer_depth,
                         transformer_depth_middle=unet.transformer_depth_middle,
                         context_dim=unet.context_dim,
                         time_downup=unet.time_downup,
                         time_context_dim=unet.time_context_dim,
                         extra_ff_mix_layer=unet.extra_ff_mix_layer,
                         use_spatial_context=unet.use_spatial_context,
                         merge_strategy=unet.merge_strategy,
                         merge_factor=unet.merge_factor,
                         spatial_transformer_attn_type=unet.spatial_transformer_attn_type,
                         video_kernel_size=unet.video_kernel_size,
                         use_linear_in_transformer=unet.use_linear_in_transformer,
                         adm_in_channels=unet.adm_in_channels,
                         disable_temporal_crossattention=unet.disable_temporal_crossattention,
                         max_ddpm_temb_period=unet.max_ddpm_temb_period,  # up to here unet params
                         merging_mode=merging_mode,
                         zero_conv_mode=zero_conv_mode,
                         frame_expansion=frame_expansion,
                         downsample_controlnet_cond=downsample_controlnet_cond,
                         use_image_encoder_normalization=use_image_encoder_normalization,
                         use_controlnet_mask=use_controlnet_mask,
                         condition_encoder=condition_encoder,
                         conditioning_embedding_out_channels=conditioning_embedding_out_channels,
                         )
        controlnet: ControlNet

        return controlnet


def zero_module(module, reset=True):
    if reset:
        for p in module.parameters():
            nn.init.zeros_(p)
    return module