Spaces:
Runtime error
Runtime error
File size: 23,146 Bytes
8fd2f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import torch
import torch.nn as nn
from typing import List, Optional, Union
from models.svd.sgm.util import default
from models.svd.sgm.modules.video_attention import SpatialVideoTransformer
from models.svd.sgm.modules.diffusionmodules.openaimodel import *
from models.diffusion.video_model import VideoResBlock, VideoUNet
from einops import repeat, rearrange
from models.svd.sgm.modules.diffusionmodules.wrappers import OpenAIWrapper
class Merger(nn.Module):
"""
Merges the controlnet latents with the conditioning embedding (encoding of control frames).
"""
def __init__(self, merge_mode: str = "addition", input_channels=0, frame_expansion="last_frame") -> None:
super().__init__()
self.merge_mode = merge_mode
self.frame_expansion = frame_expansion
def forward(self, x, condition_signal, num_video_frames, num_video_frames_conditional):
x = rearrange(x, "(B F) C H W -> B F C H W", F=num_video_frames)
condition_signal = rearrange(
condition_signal, "(B F) C H W -> B F C H W", B=x.shape[0])
if x.shape[1] - condition_signal.shape[1] > 0:
if self.frame_expansion == "last_frame":
fillup_latent = repeat(
condition_signal[:, -1], "B C H W -> B F C H W", F=x.shape[1] - condition_signal.shape[1])
elif self.frame_expansion == "zero":
fillup_latent = torch.zeros(
(x.shape[0], num_video_frames-num_video_frames_conditional, *x.shape[2:]), device=x.device, dtype=x.dtype)
if self.frame_expansion != "none":
condition_signal = torch.cat(
[condition_signal, fillup_latent], dim=1)
if self.merge_mode == "addition":
out = x + condition_signal
else:
raise NotImplementedError(
f"Merging mode {self.merge_mode} not implemented.")
out = rearrange(out, "B F C H W -> (B F) C H W")
return out
class ControlNetConditioningEmbedding(nn.Module):
"""
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
model) to encode image-space conditions ... into feature maps ..."
"""
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 96, 256),
downsample: bool = True,
final_3d_conv: bool = False,
zero_init: bool = True,
use_controlnet_mask: bool = False,
use_normalization: bool = False,
):
super().__init__()
self.final_3d_conv = final_3d_conv
self.conv_in = nn.Conv2d(
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
if final_3d_conv:
print("USING 3D CONV in ControlNET")
self.blocks = nn.ModuleList([])
if use_normalization:
self.norms = nn.ModuleList([])
self.use_normalization = use_normalization
stride = 2 if downsample else 1
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
if use_normalization:
self.norms.append(nn.LayerNorm((channel_in)))
self.blocks.append(
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=stride))
if use_normalization:
self.norms.append(nn.LayerNorm((channel_out)))
self.conv_out = zero_module(
nn.Conv2d(
block_out_channels[-1]+int(use_controlnet_mask), conditioning_embedding_channels, kernel_size=3, padding=1), reset=zero_init
)
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
if self.use_normalization:
for block, norm in zip(self.blocks, self.norms):
embedding = block(embedding)
embedding = rearrange(embedding, " ... C W H -> ... W H C")
embedding = norm(embedding)
embedding = rearrange(embedding, "... W H C -> ... C W H")
embedding = F.silu(embedding)
else:
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
class ControlNet(nn.Module):
def __init__(
self,
in_channels: int,
model_channels: int,
out_channels: int,
num_res_blocks: int,
attention_resolutions: Union[List[int], int],
dropout: float = 0.0,
channel_mult: List[int] = (1, 2, 4, 8),
conv_resample: bool = True,
dims: int = 2,
num_classes: Optional[Union[int, str]] = None,
use_checkpoint: bool = False,
num_heads: int = -1,
num_head_channels: int = -1,
num_heads_upsample: int = -1,
use_scale_shift_norm: bool = False,
resblock_updown: bool = False,
transformer_depth: Union[List[int], int] = 1,
transformer_depth_middle: Optional[int] = None,
context_dim: Optional[int] = None,
time_downup: bool = False,
time_context_dim: Optional[int] = None,
extra_ff_mix_layer: bool = False,
use_spatial_context: bool = False,
merge_strategy: str = "fixed",
merge_factor: float = 0.5,
spatial_transformer_attn_type: str = "softmax",
video_kernel_size: Union[int, List[int]] = 3,
use_linear_in_transformer: bool = False,
adm_in_channels: Optional[int] = None,
disable_temporal_crossattention: bool = False,
max_ddpm_temb_period: int = 10000,
conditioning_embedding_out_channels: Optional[Tuple[int]] = (
16, 32, 96, 256),
condition_encoder: str = "",
use_controlnet_mask: bool = False,
downsample_controlnet_cond: bool = True,
use_image_encoder_normalization: bool = False,
zero_conv_mode: str = "Identity",
frame_expansion: str = "none",
merging_mode: str = "addition",
):
super().__init__()
assert zero_conv_mode == "Identity", "Zero convolution not implemented"
assert context_dim is not None
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1
if num_head_channels == -1:
assert num_heads != -1
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
transformer_depth_middle = default(
transformer_depth_middle, transformer_depth[-1]
)
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.dims = dims
self.use_scale_shift_norm = use_scale_shift_norm
self.resblock_updown = resblock_updown
self.transformer_depth = transformer_depth
self.transformer_depth_middle = transformer_depth_middle
self.context_dim = context_dim
self.time_downup = time_downup
self.time_context_dim = time_context_dim
self.extra_ff_mix_layer = extra_ff_mix_layer
self.use_spatial_context = use_spatial_context
self.merge_strategy = merge_strategy
self.merge_factor = merge_factor
self.spatial_transformer_attn_type = spatial_transformer_attn_type
self.video_kernel_size = video_kernel_size
self.use_linear_in_transformer = use_linear_in_transformer
self.adm_in_channels = adm_in_channels
self.disable_temporal_crossattention = disable_temporal_crossattention
self.max_ddpm_temb_period = max_ddpm_temb_period
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "timestep":
self.label_emb = nn.Sequential(
Timestep(model_channels),
nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
),
)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
def get_attention_layer(
ch,
num_heads,
dim_head,
depth=1,
context_dim=None,
use_checkpoint=False,
disabled_sa=False,
):
return SpatialVideoTransformer(
ch,
num_heads,
dim_head,
depth=depth,
context_dim=context_dim,
time_context_dim=time_context_dim,
dropout=dropout,
ff_in=extra_ff_mix_layer,
use_spatial_context=use_spatial_context,
merge_strategy=merge_strategy,
merge_factor=merge_factor,
checkpoint=use_checkpoint,
use_linear=use_linear_in_transformer,
attn_mode=spatial_transformer_attn_type,
disable_self_attn=disabled_sa,
disable_temporal_crossattention=disable_temporal_crossattention,
max_time_embed_period=max_ddpm_temb_period,
)
def get_resblock(
merge_factor,
merge_strategy,
video_kernel_size,
ch,
time_embed_dim,
dropout,
out_ch,
dims,
use_checkpoint,
use_scale_shift_norm,
down=False,
up=False,
):
return VideoResBlock(
merge_factor=merge_factor,
merge_strategy=merge_strategy,
video_kernel_size=video_kernel_size,
channels=ch,
emb_channels=time_embed_dim,
dropout=dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=down,
up=up,
)
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
get_resblock(
merge_factor=merge_factor,
merge_strategy=merge_strategy,
video_kernel_size=video_kernel_size,
ch=ch,
time_embed_dim=time_embed_dim,
dropout=dropout,
out_ch=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
get_attention_layer(
ch,
num_heads,
dim_head,
depth=transformer_depth[level],
context_dim=context_dim,
use_checkpoint=use_checkpoint,
disabled_sa=False,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
ds *= 2
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
get_resblock(
merge_factor=merge_factor,
merge_strategy=merge_strategy,
video_kernel_size=video_kernel_size,
ch=ch,
time_embed_dim=time_embed_dim,
dropout=dropout,
out_ch=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch,
conv_resample,
dims=dims,
out_channels=out_ch,
third_down=time_downup,
)
)
)
ch = out_ch
input_block_chans.append(ch)
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
self.middle_block = TimestepEmbedSequential(
get_resblock(
merge_factor=merge_factor,
merge_strategy=merge_strategy,
video_kernel_size=video_kernel_size,
ch=ch,
time_embed_dim=time_embed_dim,
out_ch=None,
dropout=dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
get_attention_layer(
ch,
num_heads,
dim_head,
depth=transformer_depth_middle,
context_dim=context_dim,
use_checkpoint=use_checkpoint,
),
get_resblock(
merge_factor=merge_factor,
merge_strategy=merge_strategy,
video_kernel_size=video_kernel_size,
ch=ch,
out_ch=None,
time_embed_dim=time_embed_dim,
dropout=dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.merger = Merger(
merge_mode=merging_mode, input_channels=model_channels, frame_expansion=frame_expansion)
conditioning_channels = 3 if downsample_controlnet_cond else 4
block_out_channels = (320, 640, 1280, 1280)
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
conditioning_channels=conditioning_channels,
block_out_channels=conditioning_embedding_out_channels,
downsample=downsample_controlnet_cond,
final_3d_conv=condition_encoder.endswith("3DConv"),
use_controlnet_mask=use_controlnet_mask,
use_normalization=use_image_encoder_normalization,
)
def forward(
self,
x: th.Tensor,
timesteps: th.Tensor,
controlnet_cond: th.Tensor,
context: Optional[th.Tensor] = None,
y: Optional[th.Tensor] = None,
time_context: Optional[th.Tensor] = None,
num_video_frames: Optional[int] = None,
num_video_frames_conditional: Optional[int] = None,
image_only_indicator: Optional[th.Tensor] = None,
):
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
hs = []
t_emb = timestep_embedding(
timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
# TODO restrict y to [:self.num_frames] (conditonal frames)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
h = x
for idx, module in enumerate(self.input_blocks):
h = module(
h,
emb,
context=context,
image_only_indicator=image_only_indicator,
time_context=time_context,
num_video_frames=num_video_frames,
)
if idx == 0:
h = self.merger(h, controlnet_cond, num_video_frames=num_video_frames,
num_video_frames_conditional=num_video_frames_conditional)
hs.append(h)
h = self.middle_block(
h,
emb,
context=context,
image_only_indicator=image_only_indicator,
time_context=time_context,
num_video_frames=num_video_frames,
)
# 5. Control net blocks
down_block_res_samples = hs
mid_block_res_sample = h
return (down_block_res_samples, mid_block_res_sample)
@classmethod
def from_unet(cls,
model: OpenAIWrapper,
merging_mode: str = "addition",
zero_conv_mode: str = "Identity",
frame_expansion: str = "none",
downsample_controlnet_cond: bool = True,
use_image_encoder_normalization: bool = False,
use_controlnet_mask: bool = False,
condition_encoder: str = "",
conditioning_embedding_out_channels: List[int] = None,
):
unet: VideoUNet = model.diffusion_model
controlnet = cls(in_channels=unet.in_channels,
model_channels=unet.model_channels,
out_channels=unet.out_channels,
num_res_blocks=unet.num_res_blocks,
attention_resolutions=unet.attention_resolutions,
dropout=unet.dropout,
channel_mult=unet.channel_mult,
conv_resample=unet.conv_resample,
dims=unet.dims,
num_classes=unet.num_classes,
use_checkpoint=unet.use_checkpoint,
num_heads=unet.num_heads,
num_head_channels=unet.num_head_channels,
num_heads_upsample=unet.num_heads_upsample,
use_scale_shift_norm=unet.use_scale_shift_norm,
resblock_updown=unet.resblock_updown,
transformer_depth=unet.transformer_depth,
transformer_depth_middle=unet.transformer_depth_middle,
context_dim=unet.context_dim,
time_downup=unet.time_downup,
time_context_dim=unet.time_context_dim,
extra_ff_mix_layer=unet.extra_ff_mix_layer,
use_spatial_context=unet.use_spatial_context,
merge_strategy=unet.merge_strategy,
merge_factor=unet.merge_factor,
spatial_transformer_attn_type=unet.spatial_transformer_attn_type,
video_kernel_size=unet.video_kernel_size,
use_linear_in_transformer=unet.use_linear_in_transformer,
adm_in_channels=unet.adm_in_channels,
disable_temporal_crossattention=unet.disable_temporal_crossattention,
max_ddpm_temb_period=unet.max_ddpm_temb_period, # up to here unet params
merging_mode=merging_mode,
zero_conv_mode=zero_conv_mode,
frame_expansion=frame_expansion,
downsample_controlnet_cond=downsample_controlnet_cond,
use_image_encoder_normalization=use_image_encoder_normalization,
use_controlnet_mask=use_controlnet_mask,
condition_encoder=condition_encoder,
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
)
controlnet: ControlNet
return controlnet
def zero_module(module, reset=True):
if reset:
for p in module.parameters():
nn.init.zeros_(p)
return module
|