File size: 22,243 Bytes
8fd2f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from modules.loader.module_loader import GenericModuleLoader
from modules.params.diffusion_trainer.params_streaming_diff_trainer import DiffusionTrainerParams
import torch
from modules.params.diffusion.inference_params import InferenceParams
from utils import result_processor
from modules.loader.module_loader import GenericModuleLoader
from tqdm import tqdm
from PIL import Image, ImageFilter
from utils.inference_utils import resize_and_crop,get_padding_for_aspect_ratio
import numpy as np
from safetensors.torch import load_file as load_safetensors
import math
from einops import repeat, rearrange
from torchvision.transforms import ToTensor
from models.svd.sgm.modules.autoencoding.temporal_ae import VideoDecoder
import PIL
from modules.params.vfi import VFIParams
from modules.params.i2v_enhance import I2VEnhanceParams
from typing import List,Union
from models.diffusion.wrappers import StreamingWrapper
from diffusion_trainer.abstract_trainer import AbstractTrainer
from utils.loader import download_ckpt
import torchvision.transforms.functional as TF
from diffusers import AutoPipelineForInpainting, DEISMultistepScheduler
from transformers import BlipProcessor, BlipForConditionalGeneration

class StreamingSVD(AbstractTrainer):
    def __init__(self,
                 module_loader: GenericModuleLoader,
                 diff_trainer_params: DiffusionTrainerParams,
                 inference_params: InferenceParams,
                 vfi: VFIParams,
                 i2v_enhance: I2VEnhanceParams,
                 ):
        super().__init__(inference_params=inference_params,
                         diff_trainer_params=diff_trainer_params,
                         module_loader=module_loader,
                         )

        # network config is wrapped by OpenAIWrapper, so we dont need a direct reference anymore
        # this corresponds to the config yaml defined at model.module_loader.module_config.model.dependent_modules
        del self.network_config  
        self.diff_trainer_params: DiffusionTrainerParams
        self.vfi = vfi
        self.i2v_enhance = i2v_enhance
            
    def on_inference_epoch_start(self):
        super().on_inference_epoch_start()

        # for StreamingSVD we use a model wrapper that combines the base SVD model and the control model.  
        self.inference_model = StreamingWrapper(
            diffusion_model=self.model.diffusion_model,
            controlnet=self.controlnet,
            num_frame_conditioning=self.inference_params.num_conditional_frames
        )
    
    def post_init(self):
        self.svd_pipeline.set_progress_bar_config(disable=True) 
        if self.device.type != "cpu":
            self.svd_pipeline.enable_model_cpu_offload(gpu_id = self.device.index)

        # re-use the open clip already loaded for image conditioner for image_encoder_apm
        embedders = self.conditioner.embedders
        for embedder in embedders:
            if hasattr(embedder,"input_key") and embedder.input_key == "cond_frames_without_noise":
                self.image_encoder_apm = embedder.open_clip
        self.first_stage_model.to("cpu")
        self.conditioner.embedders[3].encoder.to("cpu")
        self.conditioner.embedders[0].open_clip.to("cpu")

        pipe = AutoPipelineForInpainting.from_pretrained(
            'Lykon/dreamshaper-8-inpainting', torch_dtype=torch.float16, variant="fp16", safety_checker=None, requires_safety_checker=False)
        
        pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
        pipe = pipe.to(self.device)
        pipe.enable_model_cpu_offload(gpu_id = self.device.index)
        self.inpaint_pipe = pipe

        processor = BlipProcessor.from_pretrained(
            "Salesforce/blip-image-captioning-large")


        model = BlipForConditionalGeneration.from_pretrained(
            "Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to(self.device)
        def blip(x): return processor.decode(model.generate(** processor(x,
                                                                         return_tensors='pt').to("cuda", torch.float16))[0], skip_special_tokens=True)
        self.blip = blip
        
    # Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
    def get_unique_embedder_keys_from_conditioner(self, conditioner):
        return list(set([x.input_key for x in conditioner.embedders]))


    # Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
    def get_batch_sgm(self, keys, value_dict, N, T, device):
        batch = {}
        batch_uc = {}

        for key in keys:
            if key == "fps_id":
                batch[key] = (
                    torch.tensor([value_dict["fps_id"]])
                    .to(device)
                    .repeat(int(math.prod(N)))
                )
            elif key == "motion_bucket_id":
                batch[key] = (
                    torch.tensor([value_dict["motion_bucket_id"]])
                    .to(device)
                    .repeat(int(math.prod(N)))
                )
            elif key == "cond_aug":
                batch[key] = repeat(
                    torch.tensor([value_dict["cond_aug"]]).to(device),
                    "1 -> b",
                    b=math.prod(N),
                )
            elif key == "cond_frames":
                batch[key] = repeat(value_dict["cond_frames"],
                                    "1 ... -> b ...", b=N[0])
            elif key == "cond_frames_without_noise":
                batch[key] = repeat(
                    value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
                )
            else:
                batch[key] = value_dict[key]

        if T is not None:
            batch["num_video_frames"] = T

        for key in batch.keys():
            if key not in batch_uc and isinstance(batch[key], torch.Tensor):
                batch_uc[key] = torch.clone(batch[key])
        return batch, batch_uc
    
    # Adapted from https://github.com/Stability-AI/generative-models/blob/main/sgm/models/diffusion.py
    @torch.no_grad()
    def decode_first_stage(self, z):
        self.first_stage_model.to(self.device)

        z = 1.0 / self.diff_trainer_params.scale_factor * z
        #n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
        n_samples = min(z.shape[0],8)
        #print("SVD decoder started")
        import time
        start = time.time()
        n_rounds = math.ceil(z.shape[0] / n_samples)
        all_out = []
        with torch.autocast("cuda", enabled=not self.diff_trainer_params.disable_first_stage_autocast):
            for n in range(n_rounds):
                if isinstance(self.first_stage_model.decoder, VideoDecoder):
                    kwargs = {"timesteps": len(
                        z[n * n_samples: (n + 1) * n_samples])}
                else:
                    kwargs = {}
                out = self.first_stage_model.decode(
                    z[n * n_samples: (n + 1) * n_samples], **kwargs
                )
                all_out.append(out)
        out = torch.cat(all_out, dim=0)
        # print(f"SVD decoder finished after {time.time()-start} seconds.")
        self.first_stage_model.to("cpu")
        return out
    

    # Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
    def _generate_conditional_output(self, svd_input_frame, inference_params: InferenceParams, **params):
        C = 4
        F = 8 # spatial compression TODO read from model
   
        H = svd_input_frame.shape[-2]
        W = svd_input_frame.shape[-1]
        num_frames = self.sampler.guider.num_frames

        shape = (num_frames, C, H // F, W // F)
        batch_size = 1

        image = svd_input_frame[None,:]
        cond_aug = 0.02

        value_dict = {}
        value_dict["motion_bucket_id"] = 127
        value_dict["fps_id"] = 6
        value_dict["cond_aug"] = cond_aug
        value_dict["cond_frames_without_noise"] = image
        value_dict["cond_frames"] =image + cond_aug * torch.rand_like(image)

        batch, batch_uc = self.get_batch_sgm(
            self.get_unique_embedder_keys_from_conditioner(
                self.conditioner),
            value_dict,
            [1, num_frames],
            T=num_frames,
            device=self.device,
        )

        self.conditioner.embedders[3].encoder.to(self.device)
        self.conditioner.embedders[0].open_clip.to(self.device)
        c, uc = self.conditioner.get_unconditional_conditioning(
            batch,
            batch_uc=batch_uc,
            force_uc_zero_embeddings=[
                "cond_frames",
                "cond_frames_without_noise",
            ],
        )
        self.conditioner.embedders[3].encoder.to("cpu")
        self.conditioner.embedders[0].open_clip.to("cpu")


        for k in ["crossattn", "concat"]:
            uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
            uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
            c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
            c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

        randn = torch.randn(shape, device=self.device)

        additional_model_inputs = {}
        additional_model_inputs["image_only_indicator"] = torch.zeros(2*batch_size,num_frames).to(self.device)
        additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

        # StreamingSVD inputs
        additional_model_inputs["batch_size"] = 2*batch_size
        additional_model_inputs["num_conditional_frames"] = self.inference_params.num_conditional_frames
        additional_model_inputs["ctrl_frames"] = params["ctrl_frames"]

        self.inference_model.diffusion_model = self.inference_model.diffusion_model.to(
            self.device)
        self.inference_model.controlnet = self.inference_model.controlnet.to(
            self.device)

        c["vector"] = c["vector"].to(randn.dtype)
        uc["vector"] = uc["vector"].to(randn.dtype)
        def denoiser(input, sigma, c):
            return self.denoiser(self.inference_model,input,sigma,c, **additional_model_inputs)
        samples_z = self.sampler(denoiser,randn,cond=c,uc=uc)

        self.inference_model.diffusion_model = self.inference_model.diffusion_model.to( "cpu")
        self.inference_model.controlnet = self.inference_model.controlnet.to("cpu")
        samples_x = self.decode_first_stage(samples_z)
        
        samples = torch.clamp(samples_x,min=-1.0,max=1.0)
        return samples
        

    def extract_anchor_frames(self, video, input_range,inference_params: InferenceParams):
        """
        Extracts anchor frames from the input video based on the provided inference parameters.

        Parameters:
        - video: torch.Tensor
            The input video tensor.
        - input_range: list
            The pixel value range of input video.
        - inference_params: InferenceParams
            An object containing inference parameters.
            - anchor_frames: str
                Specifies how the anchor frames are encoded. It can be either a single number specifying which frame is used as the anchor frame,
                or a range in the format "a:b" indicating that frames from index a up to index b (inclusive) are used as anchor frames.

        Returns:
        - torch.Tensor
            The extracted anchor frames from the input video.
        """
        video = result_processor.convert_range(video=video.clone(),input_range=input_range,output_range=[-1,1])

        if video.shape[1] == 3 and video.shape[0]>3:
            video = rearrange(video,"F C W H -> 1 F C W H")
        elif video.shape[0]>3 and video.shape[-1] == 3:
            video = rearrange(video,"F W H C -> 1 F C W H")
        else:
            raise NotImplementedError(f"Unexpected video input format: {video.shape}")

        if ":" in inference_params.anchor_frames:        
            anchor_frames = inference_params.anchor_frames.split(":")
            anchor_frames = [int(anchor_frame) for anchor_frame in anchor_frames]
            assert len(anchor_frames) == 2,"Anchor frames encoding wrong."
            anchor = video[:,anchor_frames[0]:anchor_frames[1]]
        else:
            anchor_frame = int(inference_params.anchor_frames)
            anchor = video[:, anchor_frame].unsqueeze(0)

        return anchor
    
    def extract_ctrl_frames(self,video: torch.FloatType, input_range: List[int], inference_params: InferenceParams):
        """
        Extracts control frames from the input video.

        Parameters:
        - video: torch.Tensor
            The input video tensor.
        - input_range: list
            The pixel value range of input video.
        - inference_params: InferenceParams
            An object containing inference parameters.

        Returns:
        - torch.Tensor
            The extracted control image encoding frames from the input video.
        """
        video = result_processor.convert_range(video=video.clone(), input_range=input_range, output_range=[-1, 1])
        if video.shape[1] == 3 and video.shape[0] > 3:
            video = rearrange(video, "F C W H -> 1 F C W H")
        elif video.shape[0] > 3 and video.shape[-1] == 3:
            video = rearrange(video, "F W H C -> 1 F C W H")
        else:
            raise NotImplementedError(
                f"Unexpected video input format: {video.shape}")
        
        # return the last num_conditional_frames frames
        video = video[:, -inference_params.num_conditional_frames:]
        return video


    def _autoregressive_generation(self,initial_generation: Union[torch.FloatType,List[torch.FloatType]], inference_params:InferenceParams): 
        """
        Perform autoregressive generation of video chunks based on the initial generation and inference parameters.

        Parameters:
        - initial_generation: torch.Tensor or list of torch.Tensor
            The initial generation or list of initial generation video chunks.
        - inference_params: InferenceParams
            An object containing inference parameters.

        Returns:
        - torch.Tensor
            The generated video resulting from autoregressive generation.
        """

        # input is [-1,1] float
        result_chunks = initial_generation
        if not isinstance(result_chunks,list):
            result_chunks = [result_chunks]
        
        # make sure 
        if (result_chunks[0].shape[1] >3) and (result_chunks[0].shape[-1] == 3):
            result_chunks = [rearrange(result_chunks[0],"F W H C -> F C W H")]

        # generating chunk by conditioning on the previous chunks
        for _ in tqdm(list(range(inference_params.n_autoregressive_generations)),desc="StreamingSVD"):
            
            # extract anchor frames based on the entire, so far generated, video
            # note that we do note use anchor frame in StreamingSVD (apart from the anchor frame already used by SVD).
            anchor_frames = self.extract_anchor_frames(
                video = torch.cat(result_chunks), 
                inference_params=inference_params, 
                input_range=[-1, 1],
                )
            
            # extract control frames based on the last generated chunk
            ctrl_frames = self.extract_ctrl_frames(
                video = result_chunks[-1],
                input_range=[-1, 1],
                inference_params=inference_params,
                )

            # select the anchor frame for svd
            svd_input_frame = result_chunks[0][int(inference_params.anchor_frames)]
                 
            # generate the next chunk
            # result is [F, C, H, W], range is [-1,1] float.
            result = self._generate_conditional_output(
                                                      svd_input_frame = svd_input_frame,
                                                      inference_params=inference_params,
                                                      anchor_frames=anchor_frames,
                                                      ctrl_frames=ctrl_frames,
                                                      )

            # from each generation, we keep all frames except for the first <num_conditional_frames> frames
            result = result[inference_params.num_conditional_frames:]
            result_chunks.append(result) 
            torch.cuda.empty_cache()

        # concat all chunks to one long video
        result_chunks = [result_processor.convert_range(chunk,output_range=[0,255],input_range=[-1,1]) for chunk in result_chunks]
        result = result_processor.concat_chunks(result_chunks)
        torch.cuda.empty_cache()
        return result

    def ensure_image_ratio(self,source_image: PIL,target_aspect_ratio = 16/9):

        if source_image.width / source_image.height == target_aspect_ratio:
            return source_image, None
        
        image = source_image.copy().convert("RGBA")
        mask = image.split()[-1]
        image = image.convert("RGB")
        padding = get_padding_for_aspect_ratio(image)


        mask_padded = TF.pad(mask, padding)
        mask_padded_size = mask_padded.size
        mask_padded_resized = TF.resize(mask_padded, (512, 512),
                                        interpolation=TF.InterpolationMode.NEAREST)
        mask_padded_resized = TF.invert(mask_padded_resized)

        # image
        padded_input_image = TF.pad(image, padding, padding_mode="reflect")
        resized_image = TF.resize(padded_input_image, (512, 512))

        image_tensor = (self.inpaint_pipe.image_processor.preprocess(
            resized_image).cuda().half())
        latent_tensor = self.inpaint_pipe._encode_vae_image(image_tensor, None)
        self.inpaint_pipe.scheduler.set_timesteps(999)
        noisy_latent_tensor = self.inpaint_pipe.scheduler.add_noise(
            latent_tensor,
            torch.randn_like(latent_tensor),
            self.inpaint_pipe.scheduler.timesteps[:1],
        )

        prompt = self.blip(source_image)
        if prompt.startswith("there is "):
            prompt = prompt[len("there is "):]

        output_image_normalized_size = self.inpaint_pipe(
            prompt=prompt,
            image=resized_image,
            mask_image=mask_padded_resized,
            latents=noisy_latent_tensor,
        ).images[0]

        output_image_extended_size = TF.resize(
            output_image_normalized_size, mask_padded_size[::-1])

        blured_outpainting_mask = TF.invert(mask_padded).filter(
            ImageFilter.GaussianBlur(radius=5))

        final_image = Image.composite(
            output_image_extended_size, padded_input_image, blured_outpainting_mask)
        return final_image, TF.invert(mask_padded)


    def image_to_video(self, batch, inference_params: InferenceParams, batch_idx):

        """
        Performs image to video based on the input batch and inference parameters.
        It runs SVD-XT one to generate the first chunk, then auto-regressively applies StreamingSVD.

        Parameters:
        - batch: dict
            The input batch containing the start image for generating the video.
        - inference_params: InferenceParams
            An object containing inference parameters.
        - batch_idx: int
            The index of the batch.

        Returns:
        - torch.Tensor
            The generated video based on the image image.
        """
        batch_key = "image"
        assert batch_key == "image", f"Generating video from {batch_key} not implemented."
        input_image = PIL.Image.fromarray(batch[batch_key][0].cpu().numpy())
        # TODO remove conversion forth and back

        outpainted_image, _ = self.ensure_image_ratio(input_image)

        #image = Image.fromarray(np.uint8(image))
        '''
        if image.width/image.height != 16/9:
            print(f"Warning! For best results, we assume the aspect ratio of the input image to be 16:9. Found ratio {image.width}:{image.height}.")
        '''
        scaled_outpainted_image, expanded_size = resize_and_crop(outpainted_image)
        assert scaled_outpainted_image.width == 1024 and scaled_outpainted_image.height == 576, f"Wrong shape for file {batch[batch_key]} with shape {scaled_outpainted_image.width}:{scaled_outpainted_image.height}."
        
        # Generating first chunk
        with torch.autocast(device_type="cuda",enabled=False):
            video_chunks = self.svd_pipeline(
                scaled_outpainted_image, decode_chunk_size=8).frames[0]

        video_chunks = torch.stack([ToTensor()(frame) for frame in video_chunks])
        video_chunks = video_chunks * 2.0 - 1 # [-1,1], float

        video_chunks = video_chunks.to(self.device)
    
        video = self._autoregressive_generation(
                                                initial_generation=video_chunks,
                                                inference_params=inference_params)

        return video, scaled_outpainted_image, expanded_size


    def generate_output(self, batch, batch_idx,inference_params: InferenceParams):
        """
        Generate output video based on the input batch and inference parameters.

        Parameters:
        - batch: dict
            The input batch containing data for generating the output video.
        - batch_idx: int
            The index of the batch.
        - inference_params: InferenceParams
            An object containing inference parameters.

        Returns:
        - torch.Tensor
            The generated video. Note the result is also accessible via self.trainer.generated_video
        """

        sample_id = batch["sample_id"].item()
        video, scaled_outpainted_image, expanded_size = self.image_to_video(
            batch, inference_params=inference_params, batch_idx=sample_id)
        
        self.trainer.generated_video = video.numpy()
        self.trainer.expanded_size = expanded_size
        self.trainer.scaled_outpainted_image = scaled_outpainted_image
        return video