Spaces:
Runtime error
Runtime error
File size: 22,243 Bytes
8fd2f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
from modules.loader.module_loader import GenericModuleLoader
from modules.params.diffusion_trainer.params_streaming_diff_trainer import DiffusionTrainerParams
import torch
from modules.params.diffusion.inference_params import InferenceParams
from utils import result_processor
from modules.loader.module_loader import GenericModuleLoader
from tqdm import tqdm
from PIL import Image, ImageFilter
from utils.inference_utils import resize_and_crop,get_padding_for_aspect_ratio
import numpy as np
from safetensors.torch import load_file as load_safetensors
import math
from einops import repeat, rearrange
from torchvision.transforms import ToTensor
from models.svd.sgm.modules.autoencoding.temporal_ae import VideoDecoder
import PIL
from modules.params.vfi import VFIParams
from modules.params.i2v_enhance import I2VEnhanceParams
from typing import List,Union
from models.diffusion.wrappers import StreamingWrapper
from diffusion_trainer.abstract_trainer import AbstractTrainer
from utils.loader import download_ckpt
import torchvision.transforms.functional as TF
from diffusers import AutoPipelineForInpainting, DEISMultistepScheduler
from transformers import BlipProcessor, BlipForConditionalGeneration
class StreamingSVD(AbstractTrainer):
def __init__(self,
module_loader: GenericModuleLoader,
diff_trainer_params: DiffusionTrainerParams,
inference_params: InferenceParams,
vfi: VFIParams,
i2v_enhance: I2VEnhanceParams,
):
super().__init__(inference_params=inference_params,
diff_trainer_params=diff_trainer_params,
module_loader=module_loader,
)
# network config is wrapped by OpenAIWrapper, so we dont need a direct reference anymore
# this corresponds to the config yaml defined at model.module_loader.module_config.model.dependent_modules
del self.network_config
self.diff_trainer_params: DiffusionTrainerParams
self.vfi = vfi
self.i2v_enhance = i2v_enhance
def on_inference_epoch_start(self):
super().on_inference_epoch_start()
# for StreamingSVD we use a model wrapper that combines the base SVD model and the control model.
self.inference_model = StreamingWrapper(
diffusion_model=self.model.diffusion_model,
controlnet=self.controlnet,
num_frame_conditioning=self.inference_params.num_conditional_frames
)
def post_init(self):
self.svd_pipeline.set_progress_bar_config(disable=True)
if self.device.type != "cpu":
self.svd_pipeline.enable_model_cpu_offload(gpu_id = self.device.index)
# re-use the open clip already loaded for image conditioner for image_encoder_apm
embedders = self.conditioner.embedders
for embedder in embedders:
if hasattr(embedder,"input_key") and embedder.input_key == "cond_frames_without_noise":
self.image_encoder_apm = embedder.open_clip
self.first_stage_model.to("cpu")
self.conditioner.embedders[3].encoder.to("cpu")
self.conditioner.embedders[0].open_clip.to("cpu")
pipe = AutoPipelineForInpainting.from_pretrained(
'Lykon/dreamshaper-8-inpainting', torch_dtype=torch.float16, variant="fp16", safety_checker=None, requires_safety_checker=False)
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(self.device)
pipe.enable_model_cpu_offload(gpu_id = self.device.index)
self.inpaint_pipe = pipe
processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to(self.device)
def blip(x): return processor.decode(model.generate(** processor(x,
return_tensors='pt').to("cuda", torch.float16))[0], skip_special_tokens=True)
self.blip = blip
# Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
def get_unique_embedder_keys_from_conditioner(self, conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
# Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
def get_batch_sgm(self, keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"],
"1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
# Adapted from https://github.com/Stability-AI/generative-models/blob/main/sgm/models/diffusion.py
@torch.no_grad()
def decode_first_stage(self, z):
self.first_stage_model.to(self.device)
z = 1.0 / self.diff_trainer_params.scale_factor * z
#n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
n_samples = min(z.shape[0],8)
#print("SVD decoder started")
import time
start = time.time()
n_rounds = math.ceil(z.shape[0] / n_samples)
all_out = []
with torch.autocast("cuda", enabled=not self.diff_trainer_params.disable_first_stage_autocast):
for n in range(n_rounds):
if isinstance(self.first_stage_model.decoder, VideoDecoder):
kwargs = {"timesteps": len(
z[n * n_samples: (n + 1) * n_samples])}
else:
kwargs = {}
out = self.first_stage_model.decode(
z[n * n_samples: (n + 1) * n_samples], **kwargs
)
all_out.append(out)
out = torch.cat(all_out, dim=0)
# print(f"SVD decoder finished after {time.time()-start} seconds.")
self.first_stage_model.to("cpu")
return out
# Adapted from https://github.com/Stability-AI/generative-models/blob/main/scripts/sampling/simple_video_sample.py
def _generate_conditional_output(self, svd_input_frame, inference_params: InferenceParams, **params):
C = 4
F = 8 # spatial compression TODO read from model
H = svd_input_frame.shape[-2]
W = svd_input_frame.shape[-1]
num_frames = self.sampler.guider.num_frames
shape = (num_frames, C, H // F, W // F)
batch_size = 1
image = svd_input_frame[None,:]
cond_aug = 0.02
value_dict = {}
value_dict["motion_bucket_id"] = 127
value_dict["fps_id"] = 6
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] =image + cond_aug * torch.rand_like(image)
batch, batch_uc = self.get_batch_sgm(
self.get_unique_embedder_keys_from_conditioner(
self.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=self.device,
)
self.conditioner.embedders[3].encoder.to(self.device)
self.conditioner.embedders[0].open_clip.to(self.device)
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
self.conditioner.embedders[3].encoder.to("cpu")
self.conditioner.embedders[0].open_clip.to("cpu")
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=self.device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(2*batch_size,num_frames).to(self.device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
# StreamingSVD inputs
additional_model_inputs["batch_size"] = 2*batch_size
additional_model_inputs["num_conditional_frames"] = self.inference_params.num_conditional_frames
additional_model_inputs["ctrl_frames"] = params["ctrl_frames"]
self.inference_model.diffusion_model = self.inference_model.diffusion_model.to(
self.device)
self.inference_model.controlnet = self.inference_model.controlnet.to(
self.device)
c["vector"] = c["vector"].to(randn.dtype)
uc["vector"] = uc["vector"].to(randn.dtype)
def denoiser(input, sigma, c):
return self.denoiser(self.inference_model,input,sigma,c, **additional_model_inputs)
samples_z = self.sampler(denoiser,randn,cond=c,uc=uc)
self.inference_model.diffusion_model = self.inference_model.diffusion_model.to( "cpu")
self.inference_model.controlnet = self.inference_model.controlnet.to("cpu")
samples_x = self.decode_first_stage(samples_z)
samples = torch.clamp(samples_x,min=-1.0,max=1.0)
return samples
def extract_anchor_frames(self, video, input_range,inference_params: InferenceParams):
"""
Extracts anchor frames from the input video based on the provided inference parameters.
Parameters:
- video: torch.Tensor
The input video tensor.
- input_range: list
The pixel value range of input video.
- inference_params: InferenceParams
An object containing inference parameters.
- anchor_frames: str
Specifies how the anchor frames are encoded. It can be either a single number specifying which frame is used as the anchor frame,
or a range in the format "a:b" indicating that frames from index a up to index b (inclusive) are used as anchor frames.
Returns:
- torch.Tensor
The extracted anchor frames from the input video.
"""
video = result_processor.convert_range(video=video.clone(),input_range=input_range,output_range=[-1,1])
if video.shape[1] == 3 and video.shape[0]>3:
video = rearrange(video,"F C W H -> 1 F C W H")
elif video.shape[0]>3 and video.shape[-1] == 3:
video = rearrange(video,"F W H C -> 1 F C W H")
else:
raise NotImplementedError(f"Unexpected video input format: {video.shape}")
if ":" in inference_params.anchor_frames:
anchor_frames = inference_params.anchor_frames.split(":")
anchor_frames = [int(anchor_frame) for anchor_frame in anchor_frames]
assert len(anchor_frames) == 2,"Anchor frames encoding wrong."
anchor = video[:,anchor_frames[0]:anchor_frames[1]]
else:
anchor_frame = int(inference_params.anchor_frames)
anchor = video[:, anchor_frame].unsqueeze(0)
return anchor
def extract_ctrl_frames(self,video: torch.FloatType, input_range: List[int], inference_params: InferenceParams):
"""
Extracts control frames from the input video.
Parameters:
- video: torch.Tensor
The input video tensor.
- input_range: list
The pixel value range of input video.
- inference_params: InferenceParams
An object containing inference parameters.
Returns:
- torch.Tensor
The extracted control image encoding frames from the input video.
"""
video = result_processor.convert_range(video=video.clone(), input_range=input_range, output_range=[-1, 1])
if video.shape[1] == 3 and video.shape[0] > 3:
video = rearrange(video, "F C W H -> 1 F C W H")
elif video.shape[0] > 3 and video.shape[-1] == 3:
video = rearrange(video, "F W H C -> 1 F C W H")
else:
raise NotImplementedError(
f"Unexpected video input format: {video.shape}")
# return the last num_conditional_frames frames
video = video[:, -inference_params.num_conditional_frames:]
return video
def _autoregressive_generation(self,initial_generation: Union[torch.FloatType,List[torch.FloatType]], inference_params:InferenceParams):
"""
Perform autoregressive generation of video chunks based on the initial generation and inference parameters.
Parameters:
- initial_generation: torch.Tensor or list of torch.Tensor
The initial generation or list of initial generation video chunks.
- inference_params: InferenceParams
An object containing inference parameters.
Returns:
- torch.Tensor
The generated video resulting from autoregressive generation.
"""
# input is [-1,1] float
result_chunks = initial_generation
if not isinstance(result_chunks,list):
result_chunks = [result_chunks]
# make sure
if (result_chunks[0].shape[1] >3) and (result_chunks[0].shape[-1] == 3):
result_chunks = [rearrange(result_chunks[0],"F W H C -> F C W H")]
# generating chunk by conditioning on the previous chunks
for _ in tqdm(list(range(inference_params.n_autoregressive_generations)),desc="StreamingSVD"):
# extract anchor frames based on the entire, so far generated, video
# note that we do note use anchor frame in StreamingSVD (apart from the anchor frame already used by SVD).
anchor_frames = self.extract_anchor_frames(
video = torch.cat(result_chunks),
inference_params=inference_params,
input_range=[-1, 1],
)
# extract control frames based on the last generated chunk
ctrl_frames = self.extract_ctrl_frames(
video = result_chunks[-1],
input_range=[-1, 1],
inference_params=inference_params,
)
# select the anchor frame for svd
svd_input_frame = result_chunks[0][int(inference_params.anchor_frames)]
# generate the next chunk
# result is [F, C, H, W], range is [-1,1] float.
result = self._generate_conditional_output(
svd_input_frame = svd_input_frame,
inference_params=inference_params,
anchor_frames=anchor_frames,
ctrl_frames=ctrl_frames,
)
# from each generation, we keep all frames except for the first <num_conditional_frames> frames
result = result[inference_params.num_conditional_frames:]
result_chunks.append(result)
torch.cuda.empty_cache()
# concat all chunks to one long video
result_chunks = [result_processor.convert_range(chunk,output_range=[0,255],input_range=[-1,1]) for chunk in result_chunks]
result = result_processor.concat_chunks(result_chunks)
torch.cuda.empty_cache()
return result
def ensure_image_ratio(self,source_image: PIL,target_aspect_ratio = 16/9):
if source_image.width / source_image.height == target_aspect_ratio:
return source_image, None
image = source_image.copy().convert("RGBA")
mask = image.split()[-1]
image = image.convert("RGB")
padding = get_padding_for_aspect_ratio(image)
mask_padded = TF.pad(mask, padding)
mask_padded_size = mask_padded.size
mask_padded_resized = TF.resize(mask_padded, (512, 512),
interpolation=TF.InterpolationMode.NEAREST)
mask_padded_resized = TF.invert(mask_padded_resized)
# image
padded_input_image = TF.pad(image, padding, padding_mode="reflect")
resized_image = TF.resize(padded_input_image, (512, 512))
image_tensor = (self.inpaint_pipe.image_processor.preprocess(
resized_image).cuda().half())
latent_tensor = self.inpaint_pipe._encode_vae_image(image_tensor, None)
self.inpaint_pipe.scheduler.set_timesteps(999)
noisy_latent_tensor = self.inpaint_pipe.scheduler.add_noise(
latent_tensor,
torch.randn_like(latent_tensor),
self.inpaint_pipe.scheduler.timesteps[:1],
)
prompt = self.blip(source_image)
if prompt.startswith("there is "):
prompt = prompt[len("there is "):]
output_image_normalized_size = self.inpaint_pipe(
prompt=prompt,
image=resized_image,
mask_image=mask_padded_resized,
latents=noisy_latent_tensor,
).images[0]
output_image_extended_size = TF.resize(
output_image_normalized_size, mask_padded_size[::-1])
blured_outpainting_mask = TF.invert(mask_padded).filter(
ImageFilter.GaussianBlur(radius=5))
final_image = Image.composite(
output_image_extended_size, padded_input_image, blured_outpainting_mask)
return final_image, TF.invert(mask_padded)
def image_to_video(self, batch, inference_params: InferenceParams, batch_idx):
"""
Performs image to video based on the input batch and inference parameters.
It runs SVD-XT one to generate the first chunk, then auto-regressively applies StreamingSVD.
Parameters:
- batch: dict
The input batch containing the start image for generating the video.
- inference_params: InferenceParams
An object containing inference parameters.
- batch_idx: int
The index of the batch.
Returns:
- torch.Tensor
The generated video based on the image image.
"""
batch_key = "image"
assert batch_key == "image", f"Generating video from {batch_key} not implemented."
input_image = PIL.Image.fromarray(batch[batch_key][0].cpu().numpy())
# TODO remove conversion forth and back
outpainted_image, _ = self.ensure_image_ratio(input_image)
#image = Image.fromarray(np.uint8(image))
'''
if image.width/image.height != 16/9:
print(f"Warning! For best results, we assume the aspect ratio of the input image to be 16:9. Found ratio {image.width}:{image.height}.")
'''
scaled_outpainted_image, expanded_size = resize_and_crop(outpainted_image)
assert scaled_outpainted_image.width == 1024 and scaled_outpainted_image.height == 576, f"Wrong shape for file {batch[batch_key]} with shape {scaled_outpainted_image.width}:{scaled_outpainted_image.height}."
# Generating first chunk
with torch.autocast(device_type="cuda",enabled=False):
video_chunks = self.svd_pipeline(
scaled_outpainted_image, decode_chunk_size=8).frames[0]
video_chunks = torch.stack([ToTensor()(frame) for frame in video_chunks])
video_chunks = video_chunks * 2.0 - 1 # [-1,1], float
video_chunks = video_chunks.to(self.device)
video = self._autoregressive_generation(
initial_generation=video_chunks,
inference_params=inference_params)
return video, scaled_outpainted_image, expanded_size
def generate_output(self, batch, batch_idx,inference_params: InferenceParams):
"""
Generate output video based on the input batch and inference parameters.
Parameters:
- batch: dict
The input batch containing data for generating the output video.
- batch_idx: int
The index of the batch.
- inference_params: InferenceParams
An object containing inference parameters.
Returns:
- torch.Tensor
The generated video. Note the result is also accessible via self.trainer.generated_video
"""
sample_id = batch["sample_id"].item()
video, scaled_outpainted_image, expanded_size = self.image_to_video(
batch, inference_params=inference_params, batch_idx=sample_id)
self.trainer.generated_video = video.numpy()
self.trainer.expanded_size = expanded_size
self.trainer.scaled_outpainted_image = scaled_outpainted_image
return video
|