Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/model/feature_extractor.py | |
import torch | |
import torch.nn as nn | |
import math | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
def window_partition(x, window_size): | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) | |
windows = ( | |
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0]*window_size[1], C) | |
) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
nwB, N, C = windows.shape | |
windows = windows.view(-1, window_size[0], window_size[1], C) | |
B = int(nwB / (H * W / window_size[0] / window_size[1])) | |
x = windows.view( | |
B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1 | |
) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
def pad_if_needed(x, size, window_size): | |
n, h, w, c = size | |
pad_h = math.ceil(h / window_size[0]) * window_size[0] - h | |
pad_w = math.ceil(w / window_size[1]) * window_size[1] - w | |
if pad_h > 0 or pad_w > 0: # center-pad the feature on H and W axes | |
img_mask = torch.zeros((1, h+pad_h, w+pad_w, 1)) # 1 H W 1 | |
h_slices = ( | |
slice(0, pad_h//2), | |
slice(pad_h//2, h+pad_h//2), | |
slice(h+pad_h//2, None), | |
) | |
w_slices = ( | |
slice(0, pad_w//2), | |
slice(pad_w//2, w+pad_w//2), | |
slice(w+pad_w//2, None), | |
) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition( | |
img_mask, window_size | |
) # nW, window_size*window_size, 1 | |
mask_windows = mask_windows.squeeze(-1) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill( | |
attn_mask != 0, float(-100.0) | |
).masked_fill(attn_mask == 0, float(0.0)) | |
return nn.functional.pad( | |
x, | |
(0, 0, pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), | |
), attn_mask | |
return x, None | |
def depad_if_needed(x, size, window_size): | |
n, h, w, c = size | |
pad_h = math.ceil(h / window_size[0]) * window_size[0] - h | |
pad_w = math.ceil(w / window_size[1]) * window_size[1] - w | |
if pad_h > 0 or pad_w > 0: # remove the center-padding on feature | |
return x[:, pad_h // 2 : pad_h // 2 + h, pad_w // 2 : pad_w // 2 + w, :].contiguous() | |
return x | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.dwconv = DWConv(hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
self.relu = nn.ReLU(inplace=True) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
x = self.fc1(x) | |
x = self.dwconv(x, H, W) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class InterFrameAttention(nn.Module): | |
def __init__(self, dim, motion_dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.motion_dim = motion_dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.cor_embed = nn.Linear(2, motion_dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.motion_proj = nn.Linear(motion_dim, motion_dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x1, x2, cor, H, W, mask=None): | |
B, N, C = x1.shape | |
B, N, C_c = cor.shape | |
q = self.q(x1).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
kv = self.kv(x2).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
cor_embed_ = self.cor_embed(cor) | |
cor_embed = cor_embed_.reshape(B, N, self.num_heads, self.motion_dim // self.num_heads).permute(0, 2, 1, 3) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
if mask is not None: | |
nW = mask.shape[0] # mask: nW, N, N | |
attn = attn.view(B // nW, nW, self.num_heads, N, N) + mask.unsqueeze( | |
1 | |
).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = attn.softmax(dim=-1) | |
else: | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
c_reverse = (attn @ cor_embed).transpose(1, 2).reshape(B, N, -1) | |
motion = self.motion_proj(c_reverse-cor_embed_) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x, motion | |
class MotionFormerBlock(nn.Module): | |
def __init__(self, dim, motion_dim, num_heads, window_size=0, shift_size=0, mlp_ratio=4., bidirectional=True, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,): | |
super().__init__() | |
self.window_size = window_size | |
if not isinstance(self.window_size, (tuple, list)): | |
self.window_size = to_2tuple(window_size) | |
self.shift_size = shift_size | |
if not isinstance(self.shift_size, (tuple, list)): | |
self.shift_size = to_2tuple(shift_size) | |
self.bidirectional = bidirectional | |
self.norm1 = norm_layer(dim) | |
self.attn = InterFrameAttention( | |
dim, | |
motion_dim, | |
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, cor, H, W, B): | |
x = x.view(2*B, H, W, -1) | |
x_pad, mask = pad_if_needed(x, x.size(), self.window_size) | |
cor_pad, _ = pad_if_needed(cor, cor.size(), self.window_size) | |
if self.shift_size[0] or self.shift_size[1]: | |
_, H_p, W_p, C = x_pad.shape | |
x_pad = torch.roll(x_pad, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) | |
cor_pad = torch.roll(cor_pad, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) | |
if hasattr(self, 'HW') and self.HW.item() == H_p * W_p: | |
shift_mask = self.attn_mask | |
else: | |
shift_mask = torch.zeros((1, H_p, W_p, 1)) # 1 H W 1 | |
h_slices = (slice(0, -self.window_size[0]), | |
slice(-self.window_size[0], -self.shift_size[0]), | |
slice(-self.shift_size[0], None)) | |
w_slices = (slice(0, -self.window_size[1]), | |
slice(-self.window_size[1], -self.shift_size[1]), | |
slice(-self.shift_size[1], None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
shift_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(shift_mask, self.window_size).squeeze(-1) | |
shift_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
shift_mask = shift_mask.masked_fill(shift_mask != 0, | |
float(-100.0)).masked_fill(shift_mask == 0, | |
float(0.0)) | |
if mask is not None: | |
shift_mask = shift_mask.masked_fill(mask != 0, | |
float(-100.0)) | |
self.register_buffer("attn_mask", shift_mask) | |
self.register_buffer("HW", torch.Tensor([H_p*W_p])) | |
else: | |
shift_mask = mask | |
if shift_mask is not None: | |
shift_mask = shift_mask.to(x_pad.device) | |
_, Hw, Ww, C = x_pad.shape | |
x_win = window_partition(x_pad, self.window_size) | |
cor_win = window_partition(cor_pad, self.window_size) | |
nwB = x_win.shape[0] | |
x_norm = self.norm1(x_win) | |
x_reverse = torch.cat([x_norm[nwB//2:], x_norm[:nwB//2]]) | |
x_appearence, x_motion = self.attn(x_norm, x_reverse, cor_win, H, W, shift_mask) | |
x_norm = x_norm + self.drop_path(x_appearence) | |
x_back = x_norm | |
x_back_win = window_reverse(x_back, self.window_size, Hw, Ww) | |
x_motion = window_reverse(x_motion, self.window_size, Hw, Ww) | |
if self.shift_size[0] or self.shift_size[1]: | |
x_back_win = torch.roll(x_back_win, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) | |
x_motion = torch.roll(x_motion, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) | |
x = depad_if_needed(x_back_win, x.size(), self.window_size).view(2*B, H * W, -1) | |
x_motion = depad_if_needed(x_motion, cor.size(), self.window_size).view(2*B, H * W, -1) | |
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
return x, x_motion | |
class ConvBlock(nn.Module): | |
def __init__(self, in_dim, out_dim, depths=2,act_layer=nn.PReLU): | |
super().__init__() | |
layers = [] | |
for i in range(depths): | |
if i == 0: | |
layers.append(nn.Conv2d(in_dim, out_dim, 3,1,1)) | |
else: | |
layers.append(nn.Conv2d(out_dim, out_dim, 3,1,1)) | |
layers.extend([ | |
act_layer(out_dim), | |
]) | |
self.conv = nn.Sequential(*layers) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |
class OverlapPatchEmbed(nn.Module): | |
def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, | |
padding=(patch_size[0] // 2, patch_size[1] // 2)) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x, H, W | |
class CrossScalePatchEmbed(nn.Module): | |
def __init__(self, in_dims=[16,32,64], embed_dim=768): | |
super().__init__() | |
base_dim = in_dims[0] | |
layers = [] | |
for i in range(len(in_dims)): | |
for j in range(2 ** i): | |
layers.append(nn.Conv2d(in_dims[-1-i], base_dim, 3, 2**(i+1), 1+j, 1+j)) | |
self.layers = nn.ModuleList(layers) | |
self.proj = nn.Conv2d(base_dim * len(layers), embed_dim, 1, 1) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, xs): | |
ys = [] | |
k = 0 | |
for i in range(len(xs)): | |
for _ in range(2 ** i): | |
ys.append(self.layers[k](xs[-1-i])) | |
k += 1 | |
x = self.proj(torch.cat(ys,1)) | |
_, _, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x, H, W | |
class MotionFormer(nn.Module): | |
def __init__(self, in_chans=3, embed_dims=[32, 64, 128, 256, 512], motion_dims=64, num_heads=[8, 16], | |
mlp_ratios=[4, 4], qkv_bias=True, qk_scale=None, drop_rate=0., | |
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, | |
depths=[2, 2, 2, 6, 2], window_sizes=[11, 11],**kwarg): | |
super().__init__() | |
self.depths = depths | |
self.num_stages = len(embed_dims) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
cur = 0 | |
self.conv_stages = self.num_stages - len(num_heads) | |
for i in range(self.num_stages): | |
if i == 0: | |
block = ConvBlock(in_chans,embed_dims[i],depths[i]) | |
else: | |
if i < self.conv_stages: | |
patch_embed = nn.Sequential( | |
nn.Conv2d(embed_dims[i-1], embed_dims[i], 3,2,1), | |
nn.PReLU(embed_dims[i]) | |
) | |
block = ConvBlock(embed_dims[i],embed_dims[i],depths[i]) | |
else: | |
if i == self.conv_stages: | |
patch_embed = CrossScalePatchEmbed(embed_dims[:i], | |
embed_dim=embed_dims[i]) | |
else: | |
patch_embed = OverlapPatchEmbed(patch_size=3, | |
stride=2, | |
in_chans=embed_dims[i - 1], | |
embed_dim=embed_dims[i]) | |
block = nn.ModuleList([MotionFormerBlock( | |
dim=embed_dims[i], motion_dim=motion_dims[i], num_heads=num_heads[i-self.conv_stages], window_size=window_sizes[i-self.conv_stages], | |
shift_size= 0 if (j % 2) == 0 else window_sizes[i-self.conv_stages] // 2, | |
mlp_ratio=mlp_ratios[i-self.conv_stages], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer) | |
for j in range(depths[i])]) | |
norm = norm_layer(embed_dims[i]) | |
setattr(self, f"norm{i + 1}", norm) | |
setattr(self, f"patch_embed{i + 1}", patch_embed) | |
cur += depths[i] | |
setattr(self, f"block{i + 1}", block) | |
self.cor = {} | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def get_cor(self, shape, device): | |
k = (str(shape), str(device)) | |
if k not in self.cor: | |
tenHorizontal = torch.linspace(-1.0, 1.0, shape[2], device=device).view( | |
1, 1, 1, shape[2]).expand(shape[0], -1, shape[1], -1).permute(0, 2, 3, 1) | |
tenVertical = torch.linspace(-1.0, 1.0, shape[1], device=device).view( | |
1, 1, shape[1], 1).expand(shape[0], -1, -1, shape[2]).permute(0, 2, 3, 1) | |
self.cor[k] = torch.cat([tenHorizontal, tenVertical], -1).to(device) | |
return self.cor[k] | |
def forward(self, x1, x2): | |
B = x1.shape[0] | |
x = torch.cat([x1, x2], 0) | |
motion_features = [] | |
appearence_features = [] | |
xs = [] | |
for i in range(self.num_stages): | |
motion_features.append([]) | |
patch_embed = getattr(self, f"patch_embed{i + 1}",None) | |
block = getattr(self, f"block{i + 1}",None) | |
norm = getattr(self, f"norm{i + 1}",None) | |
if i < self.conv_stages: | |
if i > 0: | |
x = patch_embed(x) | |
x = block(x) | |
xs.append(x) | |
else: | |
if i == self.conv_stages: | |
x, H, W = patch_embed(xs) | |
else: | |
x, H, W = patch_embed(x) | |
cor = self.get_cor((x.shape[0], H, W), x.device) | |
for blk in block: | |
x, x_motion = blk(x, cor, H, W, B) | |
motion_features[i].append(x_motion.reshape(2*B, H, W, -1).permute(0, 3, 1, 2).contiguous()) | |
x = norm(x) | |
x = x.reshape(2*B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
motion_features[i] = torch.cat(motion_features[i], 1) | |
appearence_features.append(x) | |
return appearence_features, motion_features | |
class DWConv(nn.Module): | |
def __init__(self, dim): | |
super(DWConv, self).__init__() | |
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
x = self.dwconv(x) | |
x = x.reshape(B, C, -1).transpose(1, 2) | |
return x | |
def feature_extractor(**kargs): | |
model = MotionFormer(**kargs) | |
return model |