Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/train.py | |
import os | |
import cv2 | |
import math | |
import time | |
import torch | |
import torch.distributed as dist | |
import numpy as np | |
import random | |
import argparse | |
from Trainer import Model | |
from dataset import VimeoDataset | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.utils.data.distributed import DistributedSampler | |
from config import * | |
device = torch.device("cuda") | |
exp = os.path.abspath('.').split('/')[-1] | |
def get_learning_rate(step): | |
if step < 2000: | |
mul = step / 2000 | |
return 2e-4 * mul | |
else: | |
mul = np.cos((step - 2000) / (300 * args.step_per_epoch - 2000) * math.pi) * 0.5 + 0.5 | |
return (2e-4 - 2e-5) * mul + 2e-5 | |
def train(model, local_rank, batch_size, data_path): | |
if local_rank == 0: | |
writer = SummaryWriter('log/train_EMAVFI') | |
step = 0 | |
nr_eval = 0 | |
best = 0 | |
dataset = VimeoDataset('train', data_path) | |
sampler = DistributedSampler(dataset) | |
train_data = DataLoader(dataset, batch_size=batch_size, num_workers=8, pin_memory=True, drop_last=True, sampler=sampler) | |
args.step_per_epoch = train_data.__len__() | |
dataset_val = VimeoDataset('test', data_path) | |
val_data = DataLoader(dataset_val, batch_size=batch_size, pin_memory=True, num_workers=8) | |
print('training...') | |
time_stamp = time.time() | |
for epoch in range(300): | |
sampler.set_epoch(epoch) | |
for i, imgs in enumerate(train_data): | |
data_time_interval = time.time() - time_stamp | |
time_stamp = time.time() | |
imgs = imgs.to(device, non_blocking=True) / 255. | |
imgs, gt = imgs[:, 0:6], imgs[:, 6:] | |
learning_rate = get_learning_rate(step) | |
_, loss = model.update(imgs, gt, learning_rate, training=True) | |
train_time_interval = time.time() - time_stamp | |
time_stamp = time.time() | |
if step % 200 == 1 and local_rank == 0: | |
writer.add_scalar('learning_rate', learning_rate, step) | |
writer.add_scalar('loss', loss, step) | |
if local_rank == 0: | |
print('epoch:{} {}/{} time:{:.2f}+{:.2f} loss:{:.4e}'.format(epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, loss)) | |
step += 1 | |
nr_eval += 1 | |
if nr_eval % 3 == 0: | |
evaluate(model, val_data, nr_eval, local_rank) | |
model.save_model(local_rank) | |
dist.barrier() | |
def evaluate(model, val_data, nr_eval, local_rank): | |
if local_rank == 0: | |
writer_val = SummaryWriter('log/validate_EMAVFI') | |
psnr = [] | |
for _, imgs in enumerate(val_data): | |
imgs = imgs.to(device, non_blocking=True) / 255. | |
imgs, gt = imgs[:, 0:6], imgs[:, 6:] | |
with torch.no_grad(): | |
pred, _ = model.update(imgs, gt, training=False) | |
for j in range(gt.shape[0]): | |
psnr.append(-10 * math.log10(((gt[j] - pred[j]) * (gt[j] - pred[j])).mean().cpu().item())) | |
psnr = np.array(psnr).mean() | |
if local_rank == 0: | |
print(str(nr_eval), psnr) | |
writer_val.add_scalar('psnr', psnr, nr_eval) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--local_rank', default=0, type=int, help='local rank') | |
parser.add_argument('--world_size', default=4, type=int, help='world size') | |
parser.add_argument('--batch_size', default=8, type=int, help='batch size') | |
parser.add_argument('--data_path', type=str, help='data path of vimeo90k') | |
args = parser.parse_args() | |
torch.distributed.init_process_group(backend="nccl", world_size=args.world_size) | |
torch.cuda.set_device(args.local_rank) | |
if args.local_rank == 0 and not os.path.exists('log'): | |
os.mkdir('log') | |
seed = 1234 | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.benchmark = True | |
model = Model(args.local_rank) | |
train(model, args.local_rank, args.batch_size, args.data_path) | |