# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/model/feature_extractor.py import torch import torch.nn as nn import math from timm.models.layers import DropPath, to_2tuple, trunc_normal_ def window_partition(x, window_size): B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = ( x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0]*window_size[1], C) ) return windows def window_reverse(windows, window_size, H, W): nwB, N, C = windows.shape windows = windows.view(-1, window_size[0], window_size[1], C) B = int(nwB / (H * W / window_size[0] / window_size[1])) x = windows.view( B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x def pad_if_needed(x, size, window_size): n, h, w, c = size pad_h = math.ceil(h / window_size[0]) * window_size[0] - h pad_w = math.ceil(w / window_size[1]) * window_size[1] - w if pad_h > 0 or pad_w > 0: # center-pad the feature on H and W axes img_mask = torch.zeros((1, h+pad_h, w+pad_w, 1)) # 1 H W 1 h_slices = ( slice(0, pad_h//2), slice(pad_h//2, h+pad_h//2), slice(h+pad_h//2, None), ) w_slices = ( slice(0, pad_w//2), slice(pad_w//2, w+pad_w//2), slice(w+pad_w//2, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, window_size ) # nW, window_size*window_size, 1 mask_windows = mask_windows.squeeze(-1) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill( attn_mask != 0, float(-100.0) ).masked_fill(attn_mask == 0, float(0.0)) return nn.functional.pad( x, (0, 0, pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), ), attn_mask return x, None def depad_if_needed(x, size, window_size): n, h, w, c = size pad_h = math.ceil(h / window_size[0]) * window_size[0] - h pad_w = math.ceil(w / window_size[1]) * window_size[1] - w if pad_h > 0 or pad_w > 0: # remove the center-padding on feature return x[:, pad_h // 2 : pad_h // 2 + h, pad_w // 2 : pad_w // 2 + w, :].contiguous() return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.relu = nn.ReLU(inplace=True) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class InterFrameAttention(nn.Module): def __init__(self, dim, motion_dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.motion_dim = motion_dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.cor_embed = nn.Linear(2, motion_dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.motion_proj = nn.Linear(motion_dim, motion_dim) self.proj_drop = nn.Dropout(proj_drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x1, x2, cor, H, W, mask=None): B, N, C = x1.shape B, N, C_c = cor.shape q = self.q(x1).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(x2).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) cor_embed_ = self.cor_embed(cor) cor_embed = cor_embed_.reshape(B, N, self.num_heads, self.motion_dim // self.num_heads).permute(0, 2, 1, 3) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: nW = mask.shape[0] # mask: nW, N, N attn = attn.view(B // nW, nW, self.num_heads, N, N) + mask.unsqueeze( 1 ).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = attn.softmax(dim=-1) else: attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) c_reverse = (attn @ cor_embed).transpose(1, 2).reshape(B, N, -1) motion = self.motion_proj(c_reverse-cor_embed_) x = self.proj(x) x = self.proj_drop(x) return x, motion class MotionFormerBlock(nn.Module): def __init__(self, dim, motion_dim, num_heads, window_size=0, shift_size=0, mlp_ratio=4., bidirectional=True, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,): super().__init__() self.window_size = window_size if not isinstance(self.window_size, (tuple, list)): self.window_size = to_2tuple(window_size) self.shift_size = shift_size if not isinstance(self.shift_size, (tuple, list)): self.shift_size = to_2tuple(shift_size) self.bidirectional = bidirectional self.norm1 = norm_layer(dim) self.attn = InterFrameAttention( dim, motion_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, cor, H, W, B): x = x.view(2*B, H, W, -1) x_pad, mask = pad_if_needed(x, x.size(), self.window_size) cor_pad, _ = pad_if_needed(cor, cor.size(), self.window_size) if self.shift_size[0] or self.shift_size[1]: _, H_p, W_p, C = x_pad.shape x_pad = torch.roll(x_pad, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) cor_pad = torch.roll(cor_pad, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) if hasattr(self, 'HW') and self.HW.item() == H_p * W_p: shift_mask = self.attn_mask else: shift_mask = torch.zeros((1, H_p, W_p, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size[0]), slice(-self.window_size[0], -self.shift_size[0]), slice(-self.shift_size[0], None)) w_slices = (slice(0, -self.window_size[1]), slice(-self.window_size[1], -self.shift_size[1]), slice(-self.shift_size[1], None)) cnt = 0 for h in h_slices: for w in w_slices: shift_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(shift_mask, self.window_size).squeeze(-1) shift_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) shift_mask = shift_mask.masked_fill(shift_mask != 0, float(-100.0)).masked_fill(shift_mask == 0, float(0.0)) if mask is not None: shift_mask = shift_mask.masked_fill(mask != 0, float(-100.0)) self.register_buffer("attn_mask", shift_mask) self.register_buffer("HW", torch.Tensor([H_p*W_p])) else: shift_mask = mask if shift_mask is not None: shift_mask = shift_mask.to(x_pad.device) _, Hw, Ww, C = x_pad.shape x_win = window_partition(x_pad, self.window_size) cor_win = window_partition(cor_pad, self.window_size) nwB = x_win.shape[0] x_norm = self.norm1(x_win) x_reverse = torch.cat([x_norm[nwB//2:], x_norm[:nwB//2]]) x_appearence, x_motion = self.attn(x_norm, x_reverse, cor_win, H, W, shift_mask) x_norm = x_norm + self.drop_path(x_appearence) x_back = x_norm x_back_win = window_reverse(x_back, self.window_size, Hw, Ww) x_motion = window_reverse(x_motion, self.window_size, Hw, Ww) if self.shift_size[0] or self.shift_size[1]: x_back_win = torch.roll(x_back_win, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) x_motion = torch.roll(x_motion, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) x = depad_if_needed(x_back_win, x.size(), self.window_size).view(2*B, H * W, -1) x_motion = depad_if_needed(x_motion, cor.size(), self.window_size).view(2*B, H * W, -1) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x, x_motion class ConvBlock(nn.Module): def __init__(self, in_dim, out_dim, depths=2,act_layer=nn.PReLU): super().__init__() layers = [] for i in range(depths): if i == 0: layers.append(nn.Conv2d(in_dim, out_dim, 3,1,1)) else: layers.append(nn.Conv2d(out_dim, out_dim, 3,1,1)) layers.extend([ act_layer(out_dim), ]) self.conv = nn.Sequential(*layers) def _init_weights(self, m): if isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.conv(x) return x class OverlapPatchEmbed(nn.Module): def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, H, W class CrossScalePatchEmbed(nn.Module): def __init__(self, in_dims=[16,32,64], embed_dim=768): super().__init__() base_dim = in_dims[0] layers = [] for i in range(len(in_dims)): for j in range(2 ** i): layers.append(nn.Conv2d(in_dims[-1-i], base_dim, 3, 2**(i+1), 1+j, 1+j)) self.layers = nn.ModuleList(layers) self.proj = nn.Conv2d(base_dim * len(layers), embed_dim, 1, 1) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, xs): ys = [] k = 0 for i in range(len(xs)): for _ in range(2 ** i): ys.append(self.layers[k](xs[-1-i])) k += 1 x = self.proj(torch.cat(ys,1)) _, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, H, W class MotionFormer(nn.Module): def __init__(self, in_chans=3, embed_dims=[32, 64, 128, 256, 512], motion_dims=64, num_heads=[8, 16], mlp_ratios=[4, 4], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[2, 2, 2, 6, 2], window_sizes=[11, 11],**kwarg): super().__init__() self.depths = depths self.num_stages = len(embed_dims) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 self.conv_stages = self.num_stages - len(num_heads) for i in range(self.num_stages): if i == 0: block = ConvBlock(in_chans,embed_dims[i],depths[i]) else: if i < self.conv_stages: patch_embed = nn.Sequential( nn.Conv2d(embed_dims[i-1], embed_dims[i], 3,2,1), nn.PReLU(embed_dims[i]) ) block = ConvBlock(embed_dims[i],embed_dims[i],depths[i]) else: if i == self.conv_stages: patch_embed = CrossScalePatchEmbed(embed_dims[:i], embed_dim=embed_dims[i]) else: patch_embed = OverlapPatchEmbed(patch_size=3, stride=2, in_chans=embed_dims[i - 1], embed_dim=embed_dims[i]) block = nn.ModuleList([MotionFormerBlock( dim=embed_dims[i], motion_dim=motion_dims[i], num_heads=num_heads[i-self.conv_stages], window_size=window_sizes[i-self.conv_stages], shift_size= 0 if (j % 2) == 0 else window_sizes[i-self.conv_stages] // 2, mlp_ratio=mlp_ratios[i-self.conv_stages], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer) for j in range(depths[i])]) norm = norm_layer(embed_dims[i]) setattr(self, f"norm{i + 1}", norm) setattr(self, f"patch_embed{i + 1}", patch_embed) cur += depths[i] setattr(self, f"block{i + 1}", block) self.cor = {} self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def get_cor(self, shape, device): k = (str(shape), str(device)) if k not in self.cor: tenHorizontal = torch.linspace(-1.0, 1.0, shape[2], device=device).view( 1, 1, 1, shape[2]).expand(shape[0], -1, shape[1], -1).permute(0, 2, 3, 1) tenVertical = torch.linspace(-1.0, 1.0, shape[1], device=device).view( 1, 1, shape[1], 1).expand(shape[0], -1, -1, shape[2]).permute(0, 2, 3, 1) self.cor[k] = torch.cat([tenHorizontal, tenVertical], -1).to(device) return self.cor[k] def forward(self, x1, x2): B = x1.shape[0] x = torch.cat([x1, x2], 0) motion_features = [] appearence_features = [] xs = [] for i in range(self.num_stages): motion_features.append([]) patch_embed = getattr(self, f"patch_embed{i + 1}",None) block = getattr(self, f"block{i + 1}",None) norm = getattr(self, f"norm{i + 1}",None) if i < self.conv_stages: if i > 0: x = patch_embed(x) x = block(x) xs.append(x) else: if i == self.conv_stages: x, H, W = patch_embed(xs) else: x, H, W = patch_embed(x) cor = self.get_cor((x.shape[0], H, W), x.device) for blk in block: x, x_motion = blk(x, cor, H, W, B) motion_features[i].append(x_motion.reshape(2*B, H, W, -1).permute(0, 3, 1, 2).contiguous()) x = norm(x) x = x.reshape(2*B, H, W, -1).permute(0, 3, 1, 2).contiguous() motion_features[i] = torch.cat(motion_features[i], 1) appearence_features.append(x) return appearence_features, motion_features class DWConv(nn.Module): def __init__(self, dim): super(DWConv, self).__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape x = x.transpose(1, 2).reshape(B, C, H, W) x = self.dwconv(x) x = x.reshape(B, C, -1).transpose(1, 2) return x def feature_extractor(**kargs): model = MotionFormer(**kargs) return model