# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/dataset.py import cv2 import os import torch import numpy as np import random from torch.utils.data import Dataset from config import * cv2.setNumThreads(1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class VimeoDataset(Dataset): def __init__(self, dataset_name, path, batch_size=32, model="RIFE"): self.batch_size = batch_size self.dataset_name = dataset_name self.model = model self.h = 256 self.w = 448 self.data_root = path self.image_root = os.path.join(self.data_root, 'sequences') train_fn = os.path.join(self.data_root, 'tri_trainlist.txt') test_fn = os.path.join(self.data_root, 'tri_testlist.txt') with open(train_fn, 'r') as f: self.trainlist = f.read().splitlines() with open(test_fn, 'r') as f: self.testlist = f.read().splitlines() self.load_data() def __len__(self): return len(self.meta_data) def load_data(self): if self.dataset_name != 'test': self.meta_data = self.trainlist else: self.meta_data = self.testlist def aug(self, img0, gt, img1, h, w): ih, iw, _ = img0.shape x = np.random.randint(0, ih - h + 1) y = np.random.randint(0, iw - w + 1) img0 = img0[x:x+h, y:y+w, :] img1 = img1[x:x+h, y:y+w, :] gt = gt[x:x+h, y:y+w, :] return img0, gt, img1 def getimg(self, index): imgpath = os.path.join(self.image_root, self.meta_data[index]) imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png'] img0 = cv2.imread(imgpaths[0]) gt = cv2.imread(imgpaths[1]) img1 = cv2.imread(imgpaths[2]) return img0, gt, img1 def __getitem__(self, index): img0, gt, img1 = self.getimg(index) if 'train' in self.dataset_name: img0, gt, img1 = self.aug(img0, gt, img1, 256, 256) if random.uniform(0, 1) < 0.5: img0 = img0[:, :, ::-1] img1 = img1[:, :, ::-1] gt = gt[:, :, ::-1] if random.uniform(0, 1) < 0.5: img1, img0 = img0, img1 if random.uniform(0, 1) < 0.5: img0 = img0[::-1] img1 = img1[::-1] gt = gt[::-1] if random.uniform(0, 1) < 0.5: img0 = img0[:, ::-1] img1 = img1[:, ::-1] gt = gt[:, ::-1] p = random.uniform(0, 1) if p < 0.25: img0 = cv2.rotate(img0, cv2.ROTATE_90_CLOCKWISE) gt = cv2.rotate(gt, cv2.ROTATE_90_CLOCKWISE) img1 = cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE) elif p < 0.5: img0 = cv2.rotate(img0, cv2.ROTATE_180) gt = cv2.rotate(gt, cv2.ROTATE_180) img1 = cv2.rotate(img1, cv2.ROTATE_180) elif p < 0.75: img0 = cv2.rotate(img0, cv2.ROTATE_90_COUNTERCLOCKWISE) gt = cv2.rotate(gt, cv2.ROTATE_90_COUNTERCLOCKWISE) img1 = cv2.rotate(img1, cv2.ROTATE_90_COUNTERCLOCKWISE) img0 = torch.from_numpy(img0.copy()).permute(2, 0, 1) img1 = torch.from_numpy(img1.copy()).permute(2, 0, 1) gt = torch.from_numpy(gt.copy()).permute(2, 0, 1) return torch.cat((img0, img1, gt), 0)