File size: 7,584 Bytes
0dcccdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import ast
import argparse
import gc
import os
from contextlib import contextmanager
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
from joblib import Parallel, delayed
from natsort import natsorted
from tqdm import tqdm
from utils.logger import logger
from utils.filter import filter
@contextmanager
def VideoCapture(video_path):
cap = cv2.VideoCapture(video_path)
try:
yield cap
finally:
cap.release()
del cap
gc.collect()
def compute_motion_score(video_path):
video_motion_scores = []
sampling_fps = 2
try:
with VideoCapture(video_path) as cap:
fps = cap.get(cv2.CAP_PROP_FPS)
valid_fps = min(max(sampling_fps, 1), fps)
frame_interval = int(fps / valid_fps)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# if cannot get the second frame, use the last one
frame_interval = min(frame_interval, total_frames - 1)
prev_frame = None
frame_count = -1
while cap.isOpened():
ret, frame = cap.read()
frame_count += 1
if not ret:
break
# skip middle frames
if frame_count % frame_interval != 0:
continue
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if prev_frame is None:
prev_frame = gray_frame
continue
flow = cv2.calcOpticalFlowFarneback(
prev_frame,
gray_frame,
None,
pyr_scale=0.5,
levels=3,
winsize=15,
iterations=3,
poly_n=5,
poly_sigma=1.2,
flags=0,
)
mag, _ = cv2.cartToPolar(flow[..., 0], flow[..., 1])
frame_motion_score = np.mean(mag)
video_motion_scores.append(frame_motion_score)
prev_frame = gray_frame
video_meta_info = {
"video_path": Path(video_path).name,
"motion_score": round(float(np.mean(video_motion_scores)), 5),
}
return video_meta_info
except Exception as e:
print(f"Compute motion score for video {video_path} with error: {e}.")
def parse_args():
parser = argparse.ArgumentParser(description="Compute the motion score of the videos.")
parser.add_argument("--video_folder", type=str, default="", help="The video folder.")
parser.add_argument(
"--video_metadata_path", type=str, default=None, help="The path to the video dataset metadata (csv/jsonl)."
)
parser.add_argument(
"--video_path_column",
type=str,
default="video_path",
help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).",
)
parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).")
parser.add_argument("--saved_freq", type=int, default=100, help="The frequency to save the output results.")
parser.add_argument("--n_jobs", type=int, default=1, help="The number of concurrent processes.")
parser.add_argument(
"--basic_metadata_path", type=str, default=None, help="The path to the basic metadata (csv/jsonl)."
)
parser.add_argument("--min_resolution", type=float, default=0, help="The resolution threshold.")
parser.add_argument("--min_duration", type=float, default=-1, help="The minimum duration.")
parser.add_argument("--max_duration", type=float, default=-1, help="The maximum duration.")
parser.add_argument(
"--asethetic_score_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
)
parser.add_argument("--min_asethetic_score", type=float, default=4.0, help="The asethetic score threshold.")
parser.add_argument(
"--asethetic_score_siglip_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
)
parser.add_argument("--min_asethetic_score_siglip", type=float, default=4.0, help="The asethetic score (SigLIP) threshold.")
parser.add_argument(
"--text_score_metadata_path", type=str, default=None, help="The path to the video text score metadata (csv/jsonl)."
)
parser.add_argument("--min_text_score", type=float, default=0.02, help="The text threshold.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.video_metadata_path.endswith(".csv"):
video_metadata_df = pd.read_csv(args.video_metadata_path)
elif args.video_metadata_path.endswith(".jsonl"):
video_metadata_df = pd.read_json(args.video_metadata_path, lines=True)
else:
raise ValueError("The video_metadata_path must end with .csv or .jsonl.")
video_path_list = video_metadata_df[args.video_path_column].tolist()
if not (args.saved_path.endswith(".csv") or args.saved_path.endswith(".jsonl")):
raise ValueError("The saved_path must end with .csv or .jsonl.")
if os.path.exists(args.saved_path):
if args.saved_path.endswith(".csv"):
saved_metadata_df = pd.read_csv(args.saved_path)
elif args.saved_path.endswith(".jsonl"):
saved_metadata_df = pd.read_json(args.saved_path, lines=True)
saved_video_path_list = saved_metadata_df[args.video_path_column].tolist()
video_path_list = list(set(video_path_list).difference(set(saved_video_path_list)))
logger.info(f"Resume from {args.saved_path}: {len(saved_video_path_list)} processed and {len(video_path_list)} to be processed.")
video_path_list = filter(
video_path_list,
basic_metadata_path=args.basic_metadata_path,
min_resolution=args.min_resolution,
min_duration=args.min_duration,
max_duration=args.max_duration,
asethetic_score_metadata_path=args.asethetic_score_metadata_path,
min_asethetic_score=args.min_asethetic_score,
asethetic_score_siglip_metadata_path=args.asethetic_score_siglip_metadata_path,
min_asethetic_score_siglip=args.min_asethetic_score_siglip,
text_score_metadata_path=args.text_score_metadata_path,
min_text_score=args.min_text_score,
)
video_path_list = [os.path.join(args.video_folder, video_path) for video_path in video_path_list]
# Sorting to guarantee the same result for each process.
video_path_list = natsorted(video_path_list)
for i in tqdm(range(0, len(video_path_list), args.saved_freq)):
result_list = Parallel(n_jobs=args.n_jobs)(
delayed(compute_motion_score)(video_path) for video_path in tqdm(video_path_list[i: i + args.saved_freq])
)
result_list = [result for result in result_list if result is not None]
if len(result_list) == 0:
continue
result_df = pd.DataFrame(result_list)
if args.saved_path.endswith(".csv"):
header = False if os.path.exists(args.saved_path) else True
result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
logger.info(f"Save result to {args.saved_path}.")
if __name__ == "__main__":
main() |