|
import os, json, requests, random, runpod |
|
|
|
import torch |
|
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel |
|
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora |
|
from diffusers.utils import export_to_video, load_image |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
with torch.inference_mode(): |
|
model_id = "/content/model" |
|
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16) |
|
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16) |
|
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16) |
|
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") |
|
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16).to("cuda") |
|
|
|
|
|
def download_file(url, save_dir, file_name): |
|
os.makedirs(save_dir, exist_ok=True) |
|
original_file_name = url.split('/')[-1] |
|
_, original_file_extension = os.path.splitext(original_file_name) |
|
file_path = os.path.join(save_dir, file_name + original_file_extension) |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
with open(file_path, 'wb') as file: |
|
file.write(response.content) |
|
return file_path |
|
|
|
@torch.inference_mode() |
|
def generate(input): |
|
values = input["input"] |
|
lora_path = "/content/shirtlift.safetensors" |
|
lora_weight = 1.0 |
|
pipe = merge_lora(pipe, lora_path, lora_weight) |
|
input_image = values['input_image_check'] |
|
input_image = download_file(url=input_image, save_dir='/content/input', file_name='input_image_tost') |
|
prompt = values['prompt'] |
|
|
|
|
|
|
|
|
|
guidance_scale = 6 |
|
use_dynamic_cfg = True |
|
num_inference_steps = 50 |
|
fps = 8 |
|
|
|
image = load_image(input_image) |
|
video = pipe(image=image, prompt=prompt, guidance_scale=guidance_scale, use_dynamic_cfg=use_dynamic_cfg, num_inference_steps=num_inference_steps).frames[0] |
|
export_to_video(video, "/content/cogvideox_5b_i2v_tost.mp4", fps=fps) |
|
|
|
result = "/content/cogvideox_5b_i2v_tost.mp4" |
|
try: |
|
notify_uri = values['notify_uri'] |
|
del values['notify_uri'] |
|
notify_token = values['notify_token'] |
|
del values['notify_token'] |
|
discord_id = values['discord_id'] |
|
del values['discord_id'] |
|
if(discord_id == "discord_id"): |
|
discord_id = os.getenv('com_camenduru_discord_id') |
|
discord_channel = values['discord_channel'] |
|
del values['discord_channel'] |
|
if(discord_channel == "discord_channel"): |
|
discord_channel = os.getenv('com_camenduru_discord_channel') |
|
discord_token = values['discord_token'] |
|
del values['discord_token'] |
|
if(discord_token == "discord_token"): |
|
discord_token = os.getenv('com_camenduru_discord_token') |
|
job_id = values['job_id'] |
|
del values['job_id'] |
|
default_filename = os.path.basename(result) |
|
with open(result, "rb") as file: |
|
files = {default_filename: file.read()} |
|
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} |
|
response = requests.post( |
|
f"https://discord.com/api/v9/channels/{discord_channel}/messages", |
|
data=payload, |
|
headers={"Authorization": f"Bot {discord_token}"}, |
|
files=files |
|
) |
|
response.raise_for_status() |
|
result_url = response.json()['attachments'][0]['url'] |
|
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} |
|
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') |
|
web_notify_token = os.getenv('com_camenduru_web_notify_token') |
|
if(notify_uri == "notify_uri"): |
|
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
else: |
|
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) |
|
return {"jobId": job_id, "result": result_url, "status": "DONE"} |
|
except Exception as e: |
|
error_payload = {"jobId": job_id, "status": "FAILED"} |
|
try: |
|
if(notify_uri == "notify_uri"): |
|
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
else: |
|
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) |
|
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) |
|
except: |
|
pass |
|
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} |
|
finally: |
|
if os.path.exists(result): |
|
os.remove(result) |
|
if os.path.exists(input_image): |
|
os.remove(input_image) |
|
|
|
runpod.serverless.start({"handler": generate}) |
|
|