vtesting2 / cogvideox /models /autoencoder_magvit.py
meepmoo's picture
Upload folder using huggingface_hub
0dcccdd verified
raw
history blame
53.2 kB
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.utils import logging
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.activations import get_activation
from diffusers.models.downsampling import CogVideoXDownsample3D
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.upsampling import CogVideoXUpsample3D
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CogVideoXSafeConv3d(nn.Conv3d):
r"""
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
# Set to 2GB, suitable for CuDNN
if memory_count > 2:
kernel_size = self.kernel_size[0]
part_num = int(memory_count / 2) + 1
input_chunks = torch.chunk(input, part_num, dim=2)
if kernel_size > 1:
input_chunks = [input_chunks[0]] + [
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
for i in range(1, len(input_chunks))
]
output_chunks = []
for input_chunk in input_chunks:
output_chunks.append(super().forward(input_chunk))
output = torch.cat(output_chunks, dim=2)
return output
else:
return super().forward(input)
class CogVideoXCausalConv3d(nn.Module):
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.
Args:
in_channels (`int`): Number of channels in the input tensor.
out_channels (`int`): Number of output channels produced by the convolution.
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
stride (`int`, defaults to `1`): Stride of the convolution.
dilation (`int`, defaults to `1`): Dilation rate of the convolution.
pad_mode (`str`, defaults to `"constant"`): Padding mode.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: int = 1,
dilation: int = 1,
pad_mode: str = "constant",
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
self.pad_mode = pad_mode
time_pad = dilation * (time_kernel_size - 1) + (1 - stride)
height_pad = height_kernel_size // 2
width_pad = width_kernel_size // 2
self.height_pad = height_pad
self.width_pad = width_pad
self.time_pad = time_pad
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
self.temporal_dim = 2
self.time_kernel_size = time_kernel_size
stride = (stride, 1, 1)
dilation = (dilation, 1, 1)
self.conv = CogVideoXSafeConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
)
self.conv_cache = None
def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor:
kernel_size = self.time_kernel_size
if kernel_size > 1:
cached_inputs = (
[self.conv_cache] if self.conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1)
)
inputs = torch.cat(cached_inputs + [inputs], dim=2)
return inputs
def _clear_fake_context_parallel_cache(self):
del self.conv_cache
self.conv_cache = None
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
inputs = self.fake_context_parallel_forward(inputs)
self._clear_fake_context_parallel_cache()
# Note: we could move these to the cpu for a lower maximum memory usage but its only a few
# hundred megabytes and so let's not do it for now
self.conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone()
padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad)
inputs = F.pad(inputs, padding_2d, mode="constant", value=0)
output = self.conv(inputs)
return output
class CogVideoXSpatialNorm3D(nn.Module):
r"""
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific
to 3D-video like data.
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.
Args:
f_channels (`int`):
The number of channels for input to group normalization layer, and output of the spatial norm layer.
zq_channels (`int`):
The number of channels for the quantized vector as described in the paper.
groups (`int`):
Number of groups to separate the channels into for group normalization.
"""
def __init__(
self,
f_channels: int,
zq_channels: int,
groups: int = 32,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor:
if f.shape[2] > 1 and f.shape[2] % 2 == 1:
f_first, f_rest = f[:, :, :1], f[:, :, 1:]
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
z_first = F.interpolate(z_first, size=f_first_size)
z_rest = F.interpolate(z_rest, size=f_rest_size)
zq = torch.cat([z_first, z_rest], dim=2)
else:
zq = F.interpolate(zq, size=f.shape[-3:])
norm_f = self.norm_layer(f)
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return new_f
class CogVideoXResnetBlock3D(nn.Module):
r"""
A 3D ResNet block used in the CogVideoX model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
dropout (`float`, defaults to `0.0`):
Dropout rate.
temb_channels (`int`, defaults to `512`):
Number of time embedding channels.
groups (`int`, defaults to `32`):
Number of groups to separate the channels into for group normalization.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
non_linearity (`str`, defaults to `"swish"`):
Activation function to use.
conv_shortcut (bool, defaults to `False`):
Whether or not to use a convolution shortcut.
spatial_norm_dim (`int`, *optional*):
The dimension to use for spatial norm if it is to be used instead of group norm.
pad_mode (str, defaults to `"first"`):
Padding mode.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
eps: float = 1e-6,
non_linearity: str = "swish",
conv_shortcut: bool = False,
spatial_norm_dim: Optional[int] = None,
pad_mode: str = "first",
):
super().__init__()
out_channels = out_channels or in_channels
self.in_channels = in_channels
self.out_channels = out_channels
self.nonlinearity = get_activation(non_linearity)
self.use_conv_shortcut = conv_shortcut
if spatial_norm_dim is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
else:
self.norm1 = CogVideoXSpatialNorm3D(
f_channels=in_channels,
zq_channels=spatial_norm_dim,
groups=groups,
)
self.norm2 = CogVideoXSpatialNorm3D(
f_channels=out_channels,
zq_channels=spatial_norm_dim,
groups=groups,
)
self.conv1 = CogVideoXCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
if temb_channels > 0:
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)
self.dropout = nn.Dropout(dropout)
self.conv2 = CogVideoXCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = CogVideoXCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
else:
self.conv_shortcut = CogVideoXSafeConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
)
def forward(
self,
inputs: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = inputs
if zq is not None:
hidden_states = self.norm1(hidden_states, zq)
else:
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]
if zq is not None:
hidden_states = self.norm2(hidden_states, zq)
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
inputs = self.conv_shortcut(inputs)
hidden_states = hidden_states + inputs
return hidden_states
class CogVideoXDownBlock3D(nn.Module):
r"""
A downsampling block used in the CogVideoX model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
temb_channels (`int`, defaults to `512`):
Number of time embedding channels.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
resnet_groups (`int`, defaults to `32`):
Number of groups to separate the channels into for group normalization.
add_downsample (`bool`, defaults to `True`):
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
compress_time (`bool`, defaults to `False`):
Whether or not to downsample across temporal dimension.
pad_mode (str, defaults to `"first"`):
Padding mode.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
add_downsample: bool = True,
downsample_padding: int = 0,
compress_time: bool = False,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channel = in_channels if i == 0 else out_channels
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channel,
out_channels=out_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
non_linearity=resnet_act_fn,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.downsamplers = None
if add_downsample:
self.downsamplers = nn.ModuleList(
[
CogVideoXDownsample3D(
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states
class CogVideoXMidBlock3D(nn.Module):
r"""
A middle block used in the CogVideoX model.
Args:
in_channels (`int`):
Number of input channels.
temb_channels (`int`, defaults to `512`):
Number of time embedding channels.
dropout (`float`, defaults to `0.0`):
Dropout rate.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
resnet_groups (`int`, defaults to `32`):
Number of groups to separate the channels into for group normalization.
spatial_norm_dim (`int`, *optional*):
The dimension to use for spatial norm if it is to be used instead of group norm.
pad_mode (str, defaults to `"first"`):
Padding mode.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
spatial_norm_dim: Optional[int] = None,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for _ in range(num_layers):
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
spatial_norm_dim=spatial_norm_dim,
non_linearity=resnet_act_fn,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
return hidden_states
class CogVideoXUpBlock3D(nn.Module):
r"""
An upsampling block used in the CogVideoX model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
temb_channels (`int`, defaults to `512`):
Number of time embedding channels.
dropout (`float`, defaults to `0.0`):
Dropout rate.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
resnet_groups (`int`, defaults to `32`):
Number of groups to separate the channels into for group normalization.
spatial_norm_dim (`int`, defaults to `16`):
The dimension to use for spatial norm if it is to be used instead of group norm.
add_upsample (`bool`, defaults to `True`):
Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension.
compress_time (`bool`, defaults to `False`):
Whether or not to downsample across temporal dimension.
pad_mode (str, defaults to `"first"`):
Padding mode.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
spatial_norm_dim: int = 16,
add_upsample: bool = True,
upsample_padding: int = 1,
compress_time: bool = False,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channel = in_channels if i == 0 else out_channels
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channel,
out_channels=out_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
non_linearity=resnet_act_fn,
spatial_norm_dim=spatial_norm_dim,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.upsamplers = None
if add_upsample:
self.upsamplers = nn.ModuleList(
[
CogVideoXUpsample3D(
out_channels, out_channels, padding=upsample_padding, compress_time=compress_time
)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""Forward method of the `CogVideoXUpBlock3D` class."""
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class CogVideoXEncoder3D(nn.Module):
r"""
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int = 3,
out_channels: int = 16,
down_block_types: Tuple[str, ...] = (
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
dropout: float = 0.0,
pad_mode: str = "first",
temporal_compression_ratio: float = 4,
):
super().__init__()
# log2 of temporal_compress_times
temporal_compress_level = int(np.log2(temporal_compression_ratio))
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
self.down_blocks = nn.ModuleList([])
# down blocks
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
compress_time = i < temporal_compress_level
if down_block_type == "CogVideoXDownBlock3D":
down_block = CogVideoXDownBlock3D(
in_channels=input_channel,
out_channels=output_channel,
temb_channels=0,
dropout=dropout,
num_layers=layers_per_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
add_downsample=not is_final_block,
compress_time=compress_time,
)
else:
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")
self.down_blocks.append(down_block)
# mid block
self.mid_block = CogVideoXMidBlock3D(
in_channels=block_out_channels[-1],
temb_channels=0,
dropout=dropout,
num_layers=2,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
pad_mode=pad_mode,
)
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = CogVideoXCausalConv3d(
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
r"""The forward method of the `CogVideoXEncoder3D` class."""
hidden_states = self.conv_in(sample)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# 1. Down
for down_block in self.down_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), hidden_states, temb, None
)
# 2. Mid
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb, None
)
else:
# 1. Down
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states, temb, None)
# 2. Mid
hidden_states = self.mid_block(hidden_states, temb, None)
# 3. Post-process
hidden_states = self.norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class CogVideoXDecoder3D(nn.Module):
r"""
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
sample.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int = 16,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = (
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
dropout: float = 0.0,
pad_mode: str = "first",
temporal_compression_ratio: float = 4,
):
super().__init__()
reversed_block_out_channels = list(reversed(block_out_channels))
self.conv_in = CogVideoXCausalConv3d(
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
)
# mid block
self.mid_block = CogVideoXMidBlock3D(
in_channels=reversed_block_out_channels[0],
temb_channels=0,
num_layers=2,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
spatial_norm_dim=in_channels,
pad_mode=pad_mode,
)
# up blocks
self.up_blocks = nn.ModuleList([])
output_channel = reversed_block_out_channels[0]
temporal_compress_level = int(np.log2(temporal_compression_ratio))
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
compress_time = i < temporal_compress_level
if up_block_type == "CogVideoXUpBlock3D":
up_block = CogVideoXUpBlock3D(
in_channels=prev_output_channel,
out_channels=output_channel,
temb_channels=0,
dropout=dropout,
num_layers=layers_per_block + 1,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
spatial_norm_dim=in_channels,
add_upsample=not is_final_block,
compress_time=compress_time,
pad_mode=pad_mode,
)
prev_output_channel = output_channel
else:
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")
self.up_blocks.append(up_block)
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
self.conv_act = nn.SiLU()
self.conv_out = CogVideoXCausalConv3d(
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
r"""The forward method of the `CogVideoXDecoder3D` class."""
hidden_states = self.conv_in(sample)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# 1. Mid
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb, sample
)
# 2. Up
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block), hidden_states, temb, sample
)
else:
# 1. Mid
hidden_states = self.mid_block(hidden_states, temb, sample)
# 2. Up
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states, temb, sample)
# 3. Post-process
hidden_states = self.norm_out(hidden_states, sample)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[CogVideoX](https://github.com/THUDM/CogVideo).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["CogVideoXResnetBlock3D"]
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = (
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
),
up_block_types: Tuple[str] = (
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
),
block_out_channels: Tuple[int] = (128, 256, 256, 512),
latent_channels: int = 16,
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
temporal_compression_ratio: float = 4,
sample_height: int = 480,
sample_width: int = 720,
scaling_factor: float = 1.15258426,
shift_factor: Optional[float] = None,
latents_mean: Optional[Tuple[float]] = None,
latents_std: Optional[Tuple[float]] = None,
force_upcast: float = True,
use_quant_conv: bool = False,
use_post_quant_conv: bool = False,
):
super().__init__()
self.encoder = CogVideoXEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.decoder = CogVideoXDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
self.use_slicing = False
self.use_tiling = False
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
# recommended because the temporal parts of the VAE, here, are tricky to understand.
# If you decode X latent frames together, the number of output frames is:
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
#
# Example with num_latent_frames_batch_size = 2:
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
# => 6 * 8 = 48 frames
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
# => 1 * 9 + 5 * 8 = 49 frames
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
# number of temporal frames.
self.num_latent_frames_batch_size = 2
# We make the minimum height and width of sample for tiling half that of the generally supported
self.tile_sample_min_height = sample_height // 2
self.tile_sample_min_width = sample_width // 2
self.tile_latent_min_height = int(
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
)
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
# and so the tiling implementation has only been tested on those specific resolutions.
self.tile_overlap_factor_height = 1 / 6
self.tile_overlap_factor_width = 1 / 5
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
module.gradient_checkpointing = value
def _clear_fake_context_parallel_cache(self):
for name, module in self.named_modules():
if isinstance(module, CogVideoXCausalConv3d):
logger.debug(f"Clearing fake Context Parallel cache for layer: {name}")
module._clear_fake_context_parallel_cache()
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_overlap_factor_height: Optional[float] = None,
tile_overlap_factor_width: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_overlap_factor_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
tile_overlap_factor_width (`int`, *optional*):
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_latent_min_height = int(
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
)
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
batch_size, num_channels, num_frames, height, width = x.shape
if num_frames == 1:
h = self.encoder(x)
if self.quant_conv is not None:
h = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(h)
else:
frame_batch_size = 4
h = []
for i in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
end_frame = frame_batch_size * (i + 1) + remaining_frames
z_intermediate = x[:, :, start_frame:end_frame]
z_intermediate = self.encoder(z_intermediate)
if self.quant_conv is not None:
z_intermediate = self.quant_conv(z_intermediate)
h.append(z_intermediate)
self._clear_fake_context_parallel_cache()
h = torch.cat(h, dim=2)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
return self.tiled_decode(z, return_dict=return_dict)
if num_frames == 1:
dec = []
z_intermediate = z
if self.post_quant_conv is not None:
z_intermediate = self.post_quant_conv(z_intermediate)
z_intermediate = self.decoder(z_intermediate)
dec.append(z_intermediate)
else:
frame_batch_size = self.num_latent_frames_batch_size
dec = []
for i in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
end_frame = frame_batch_size * (i + 1) + remaining_frames
z_intermediate = z[:, :, start_frame:end_frame]
if self.post_quant_conv is not None:
z_intermediate = self.post_quant_conv(z_intermediate)
z_intermediate = self.decoder(z_intermediate)
dec.append(z_intermediate)
self._clear_fake_context_parallel_cache()
dec = torch.cat(dec, dim=2)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
# Rough memory assessment:
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
# - Assume fp16 (2 bytes per value).
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
#
# Memory assessment when using tiling:
# - Assume everything as above but now HxW is 240x360 by tiling in half
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB
batch_size, num_channels, num_frames, height, width = z.shape
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
row_limit_height = self.tile_sample_min_height - blend_extent_height
row_limit_width = self.tile_sample_min_width - blend_extent_width
frame_batch_size = self.num_latent_frames_batch_size
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, overlap_height):
row = []
for j in range(0, width, overlap_width):
time = []
for k in range(num_frames // frame_batch_size):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + self.tile_latent_min_height,
j : j + self.tile_latent_min_width,
]
if self.post_quant_conv is not None:
tile = self.post_quant_conv(tile)
tile = self.decoder(tile)
time.append(tile)
self._clear_fake_context_parallel_cache()
row.append(torch.cat(time, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z)
if not return_dict:
return (dec,)
return dec