|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders.single_file_model import FromOriginalModelMixin |
|
from diffusers.utils import logging |
|
from diffusers.utils.accelerate_utils import apply_forward_hook |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.downsampling import CogVideoXDownsample3D |
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.upsampling import CogVideoXUpsample3D |
|
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CogVideoXSafeConv3d(nn.Conv3d): |
|
r""" |
|
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. |
|
""" |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3 |
|
|
|
|
|
if memory_count > 2: |
|
kernel_size = self.kernel_size[0] |
|
part_num = int(memory_count / 2) + 1 |
|
input_chunks = torch.chunk(input, part_num, dim=2) |
|
|
|
if kernel_size > 1: |
|
input_chunks = [input_chunks[0]] + [ |
|
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) |
|
for i in range(1, len(input_chunks)) |
|
] |
|
|
|
output_chunks = [] |
|
for input_chunk in input_chunks: |
|
output_chunks.append(super().forward(input_chunk)) |
|
output = torch.cat(output_chunks, dim=2) |
|
return output |
|
else: |
|
return super().forward(input) |
|
|
|
|
|
class CogVideoXCausalConv3d(nn.Module): |
|
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. |
|
|
|
Args: |
|
in_channels (`int`): Number of channels in the input tensor. |
|
out_channels (`int`): Number of output channels produced by the convolution. |
|
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. |
|
stride (`int`, defaults to `1`): Stride of the convolution. |
|
dilation (`int`, defaults to `1`): Dilation rate of the convolution. |
|
pad_mode (`str`, defaults to `"constant"`): Padding mode. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Union[int, Tuple[int, int, int]], |
|
stride: int = 1, |
|
dilation: int = 1, |
|
pad_mode: str = "constant", |
|
): |
|
super().__init__() |
|
|
|
if isinstance(kernel_size, int): |
|
kernel_size = (kernel_size,) * 3 |
|
|
|
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size |
|
|
|
self.pad_mode = pad_mode |
|
time_pad = dilation * (time_kernel_size - 1) + (1 - stride) |
|
height_pad = height_kernel_size // 2 |
|
width_pad = width_kernel_size // 2 |
|
|
|
self.height_pad = height_pad |
|
self.width_pad = width_pad |
|
self.time_pad = time_pad |
|
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) |
|
|
|
self.temporal_dim = 2 |
|
self.time_kernel_size = time_kernel_size |
|
|
|
stride = (stride, 1, 1) |
|
dilation = (dilation, 1, 1) |
|
self.conv = CogVideoXSafeConv3d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
) |
|
|
|
self.conv_cache = None |
|
|
|
def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
kernel_size = self.time_kernel_size |
|
if kernel_size > 1: |
|
cached_inputs = ( |
|
[self.conv_cache] if self.conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) |
|
) |
|
inputs = torch.cat(cached_inputs + [inputs], dim=2) |
|
return inputs |
|
|
|
def _clear_fake_context_parallel_cache(self): |
|
del self.conv_cache |
|
self.conv_cache = None |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
inputs = self.fake_context_parallel_forward(inputs) |
|
|
|
self._clear_fake_context_parallel_cache() |
|
|
|
|
|
self.conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() |
|
|
|
padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) |
|
inputs = F.pad(inputs, padding_2d, mode="constant", value=0) |
|
|
|
output = self.conv(inputs) |
|
return output |
|
|
|
|
|
class CogVideoXSpatialNorm3D(nn.Module): |
|
r""" |
|
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific |
|
to 3D-video like data. |
|
|
|
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. |
|
|
|
Args: |
|
f_channels (`int`): |
|
The number of channels for input to group normalization layer, and output of the spatial norm layer. |
|
zq_channels (`int`): |
|
The number of channels for the quantized vector as described in the paper. |
|
groups (`int`): |
|
Number of groups to separate the channels into for group normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
f_channels: int, |
|
zq_channels: int, |
|
groups: int = 32, |
|
): |
|
super().__init__() |
|
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) |
|
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) |
|
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) |
|
|
|
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: |
|
if f.shape[2] > 1 and f.shape[2] % 2 == 1: |
|
f_first, f_rest = f[:, :, :1], f[:, :, 1:] |
|
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] |
|
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] |
|
z_first = F.interpolate(z_first, size=f_first_size) |
|
z_rest = F.interpolate(z_rest, size=f_rest_size) |
|
zq = torch.cat([z_first, z_rest], dim=2) |
|
else: |
|
zq = F.interpolate(zq, size=f.shape[-3:]) |
|
|
|
norm_f = self.norm_layer(f) |
|
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) |
|
return new_f |
|
|
|
|
|
class CogVideoXResnetBlock3D(nn.Module): |
|
r""" |
|
A 3D ResNet block used in the CogVideoX model. |
|
|
|
Args: |
|
in_channels (`int`): |
|
Number of input channels. |
|
out_channels (`int`, *optional*): |
|
Number of output channels. If None, defaults to `in_channels`. |
|
dropout (`float`, defaults to `0.0`): |
|
Dropout rate. |
|
temb_channels (`int`, defaults to `512`): |
|
Number of time embedding channels. |
|
groups (`int`, defaults to `32`): |
|
Number of groups to separate the channels into for group normalization. |
|
eps (`float`, defaults to `1e-6`): |
|
Epsilon value for normalization layers. |
|
non_linearity (`str`, defaults to `"swish"`): |
|
Activation function to use. |
|
conv_shortcut (bool, defaults to `False`): |
|
Whether or not to use a convolution shortcut. |
|
spatial_norm_dim (`int`, *optional*): |
|
The dimension to use for spatial norm if it is to be used instead of group norm. |
|
pad_mode (str, defaults to `"first"`): |
|
Padding mode. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
conv_shortcut: bool = False, |
|
spatial_norm_dim: Optional[int] = None, |
|
pad_mode: str = "first", |
|
): |
|
super().__init__() |
|
|
|
out_channels = out_channels or in_channels |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.nonlinearity = get_activation(non_linearity) |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
if spatial_norm_dim is None: |
|
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) |
|
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) |
|
else: |
|
self.norm1 = CogVideoXSpatialNorm3D( |
|
f_channels=in_channels, |
|
zq_channels=spatial_norm_dim, |
|
groups=groups, |
|
) |
|
self.norm2 = CogVideoXSpatialNorm3D( |
|
f_channels=out_channels, |
|
zq_channels=spatial_norm_dim, |
|
groups=groups, |
|
) |
|
|
|
self.conv1 = CogVideoXCausalConv3d( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode |
|
) |
|
|
|
if temb_channels > 0: |
|
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = CogVideoXCausalConv3d( |
|
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode |
|
) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = CogVideoXCausalConv3d( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode |
|
) |
|
else: |
|
self.conv_shortcut = CogVideoXSafeConv3d( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward( |
|
self, |
|
inputs: torch.Tensor, |
|
temb: Optional[torch.Tensor] = None, |
|
zq: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
hidden_states = inputs |
|
|
|
if zq is not None: |
|
hidden_states = self.norm1(hidden_states, zq) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if temb is not None: |
|
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] |
|
|
|
if zq is not None: |
|
hidden_states = self.norm2(hidden_states, zq) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.in_channels != self.out_channels: |
|
inputs = self.conv_shortcut(inputs) |
|
|
|
hidden_states = hidden_states + inputs |
|
return hidden_states |
|
|
|
|
|
class CogVideoXDownBlock3D(nn.Module): |
|
r""" |
|
A downsampling block used in the CogVideoX model. |
|
|
|
Args: |
|
in_channels (`int`): |
|
Number of input channels. |
|
out_channels (`int`, *optional*): |
|
Number of output channels. If None, defaults to `in_channels`. |
|
temb_channels (`int`, defaults to `512`): |
|
Number of time embedding channels. |
|
num_layers (`int`, defaults to `1`): |
|
Number of resnet layers. |
|
dropout (`float`, defaults to `0.0`): |
|
Dropout rate. |
|
resnet_eps (`float`, defaults to `1e-6`): |
|
Epsilon value for normalization layers. |
|
resnet_act_fn (`str`, defaults to `"swish"`): |
|
Activation function to use. |
|
resnet_groups (`int`, defaults to `32`): |
|
Number of groups to separate the channels into for group normalization. |
|
add_downsample (`bool`, defaults to `True`): |
|
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. |
|
compress_time (`bool`, defaults to `False`): |
|
Whether or not to downsample across temporal dimension. |
|
pad_mode (str, defaults to `"first"`): |
|
Padding mode. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
add_downsample: bool = True, |
|
downsample_padding: int = 0, |
|
compress_time: bool = False, |
|
pad_mode: str = "first", |
|
): |
|
super().__init__() |
|
|
|
resnets = [] |
|
for i in range(num_layers): |
|
in_channel = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
CogVideoXResnetBlock3D( |
|
in_channels=in_channel, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
temb_channels=temb_channels, |
|
groups=resnet_groups, |
|
eps=resnet_eps, |
|
non_linearity=resnet_act_fn, |
|
pad_mode=pad_mode, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.downsamplers = None |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
CogVideoXDownsample3D( |
|
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time |
|
) |
|
] |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
temb: Optional[torch.Tensor] = None, |
|
zq: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def create_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return create_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, zq |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, zq) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CogVideoXMidBlock3D(nn.Module): |
|
r""" |
|
A middle block used in the CogVideoX model. |
|
|
|
Args: |
|
in_channels (`int`): |
|
Number of input channels. |
|
temb_channels (`int`, defaults to `512`): |
|
Number of time embedding channels. |
|
dropout (`float`, defaults to `0.0`): |
|
Dropout rate. |
|
num_layers (`int`, defaults to `1`): |
|
Number of resnet layers. |
|
resnet_eps (`float`, defaults to `1e-6`): |
|
Epsilon value for normalization layers. |
|
resnet_act_fn (`str`, defaults to `"swish"`): |
|
Activation function to use. |
|
resnet_groups (`int`, defaults to `32`): |
|
Number of groups to separate the channels into for group normalization. |
|
spatial_norm_dim (`int`, *optional*): |
|
The dimension to use for spatial norm if it is to be used instead of group norm. |
|
pad_mode (str, defaults to `"first"`): |
|
Padding mode. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
spatial_norm_dim: Optional[int] = None, |
|
pad_mode: str = "first", |
|
): |
|
super().__init__() |
|
|
|
resnets = [] |
|
for _ in range(num_layers): |
|
resnets.append( |
|
CogVideoXResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
dropout=dropout, |
|
temb_channels=temb_channels, |
|
groups=resnet_groups, |
|
eps=resnet_eps, |
|
spatial_norm_dim=spatial_norm_dim, |
|
non_linearity=resnet_act_fn, |
|
pad_mode=pad_mode, |
|
) |
|
) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
temb: Optional[torch.Tensor] = None, |
|
zq: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def create_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return create_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, zq |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, zq) |
|
|
|
return hidden_states |
|
|
|
|
|
class CogVideoXUpBlock3D(nn.Module): |
|
r""" |
|
An upsampling block used in the CogVideoX model. |
|
|
|
Args: |
|
in_channels (`int`): |
|
Number of input channels. |
|
out_channels (`int`, *optional*): |
|
Number of output channels. If None, defaults to `in_channels`. |
|
temb_channels (`int`, defaults to `512`): |
|
Number of time embedding channels. |
|
dropout (`float`, defaults to `0.0`): |
|
Dropout rate. |
|
num_layers (`int`, defaults to `1`): |
|
Number of resnet layers. |
|
resnet_eps (`float`, defaults to `1e-6`): |
|
Epsilon value for normalization layers. |
|
resnet_act_fn (`str`, defaults to `"swish"`): |
|
Activation function to use. |
|
resnet_groups (`int`, defaults to `32`): |
|
Number of groups to separate the channels into for group normalization. |
|
spatial_norm_dim (`int`, defaults to `16`): |
|
The dimension to use for spatial norm if it is to be used instead of group norm. |
|
add_upsample (`bool`, defaults to `True`): |
|
Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. |
|
compress_time (`bool`, defaults to `False`): |
|
Whether or not to downsample across temporal dimension. |
|
pad_mode (str, defaults to `"first"`): |
|
Padding mode. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
spatial_norm_dim: int = 16, |
|
add_upsample: bool = True, |
|
upsample_padding: int = 1, |
|
compress_time: bool = False, |
|
pad_mode: str = "first", |
|
): |
|
super().__init__() |
|
|
|
resnets = [] |
|
for i in range(num_layers): |
|
in_channel = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
CogVideoXResnetBlock3D( |
|
in_channels=in_channel, |
|
out_channels=out_channels, |
|
dropout=dropout, |
|
temb_channels=temb_channels, |
|
groups=resnet_groups, |
|
eps=resnet_eps, |
|
non_linearity=resnet_act_fn, |
|
spatial_norm_dim=spatial_norm_dim, |
|
pad_mode=pad_mode, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.upsamplers = None |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList( |
|
[ |
|
CogVideoXUpsample3D( |
|
out_channels, out_channels, padding=upsample_padding, compress_time=compress_time |
|
) |
|
] |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
temb: Optional[torch.Tensor] = None, |
|
zq: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
r"""Forward method of the `CogVideoXUpBlock3D` class.""" |
|
for resnet in self.resnets: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def create_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return create_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, zq |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb, zq) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CogVideoXEncoder3D(nn.Module): |
|
r""" |
|
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available |
|
options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 16, |
|
down_block_types: Tuple[str, ...] = ( |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), |
|
layers_per_block: int = 3, |
|
act_fn: str = "silu", |
|
norm_eps: float = 1e-6, |
|
norm_num_groups: int = 32, |
|
dropout: float = 0.0, |
|
pad_mode: str = "first", |
|
temporal_compression_ratio: float = 4, |
|
): |
|
super().__init__() |
|
|
|
|
|
temporal_compress_level = int(np.log2(temporal_compression_ratio)) |
|
|
|
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) |
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
compress_time = i < temporal_compress_level |
|
|
|
if down_block_type == "CogVideoXDownBlock3D": |
|
down_block = CogVideoXDownBlock3D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=0, |
|
dropout=dropout, |
|
num_layers=layers_per_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
add_downsample=not is_final_block, |
|
compress_time=compress_time, |
|
) |
|
else: |
|
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") |
|
|
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = CogVideoXMidBlock3D( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=0, |
|
dropout=dropout, |
|
num_layers=2, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
pad_mode=pad_mode, |
|
) |
|
|
|
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = CogVideoXCausalConv3d( |
|
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
r"""The forward method of the `CogVideoXEncoder3D` class.""" |
|
hidden_states = self.conv_in(sample) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
for down_block in self.down_blocks: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(down_block), hidden_states, temb, None |
|
) |
|
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), hidden_states, temb, None |
|
) |
|
else: |
|
|
|
for down_block in self.down_blocks: |
|
hidden_states = down_block(hidden_states, temb, None) |
|
|
|
|
|
hidden_states = self.mid_block(hidden_states, temb, None) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states) |
|
hidden_states = self.conv_act(hidden_states) |
|
hidden_states = self.conv_out(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CogVideoXDecoder3D(nn.Module): |
|
r""" |
|
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output |
|
sample. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 16, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ( |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), |
|
layers_per_block: int = 3, |
|
act_fn: str = "silu", |
|
norm_eps: float = 1e-6, |
|
norm_num_groups: int = 32, |
|
dropout: float = 0.0, |
|
pad_mode: str = "first", |
|
temporal_compression_ratio: float = 4, |
|
): |
|
super().__init__() |
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
|
|
self.conv_in = CogVideoXCausalConv3d( |
|
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode |
|
) |
|
|
|
|
|
self.mid_block = CogVideoXMidBlock3D( |
|
in_channels=reversed_block_out_channels[0], |
|
temb_channels=0, |
|
num_layers=2, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
spatial_norm_dim=in_channels, |
|
pad_mode=pad_mode, |
|
) |
|
|
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
temporal_compress_level = int(np.log2(temporal_compression_ratio)) |
|
|
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
compress_time = i < temporal_compress_level |
|
|
|
if up_block_type == "CogVideoXUpBlock3D": |
|
up_block = CogVideoXUpBlock3D( |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
temb_channels=0, |
|
dropout=dropout, |
|
num_layers=layers_per_block + 1, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
spatial_norm_dim=in_channels, |
|
add_upsample=not is_final_block, |
|
compress_time=compress_time, |
|
pad_mode=pad_mode, |
|
) |
|
prev_output_channel = output_channel |
|
else: |
|
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") |
|
|
|
self.up_blocks.append(up_block) |
|
|
|
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = CogVideoXCausalConv3d( |
|
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
r"""The forward method of the `CogVideoXDecoder3D` class.""" |
|
hidden_states = self.conv_in(sample) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), hidden_states, temb, sample |
|
) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), hidden_states, temb, sample |
|
) |
|
else: |
|
|
|
hidden_states = self.mid_block(hidden_states, temb, sample) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
hidden_states = up_block(hidden_states, temb, sample) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, sample) |
|
hidden_states = self.conv_act(hidden_states) |
|
hidden_states = self.conv_out(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): |
|
r""" |
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in |
|
[CogVideoX](https://github.com/THUDM/CogVideo). |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size. |
|
scaling_factor (`float`, *optional*, defaults to `1.15258426`): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
force_upcast (`bool`, *optional*, default to `True`): |
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE |
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case |
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["CogVideoXResnetBlock3D"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ( |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
), |
|
up_block_types: Tuple[str] = ( |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
), |
|
block_out_channels: Tuple[int] = (128, 256, 256, 512), |
|
latent_channels: int = 16, |
|
layers_per_block: int = 3, |
|
act_fn: str = "silu", |
|
norm_eps: float = 1e-6, |
|
norm_num_groups: int = 32, |
|
temporal_compression_ratio: float = 4, |
|
sample_height: int = 480, |
|
sample_width: int = 720, |
|
scaling_factor: float = 1.15258426, |
|
shift_factor: Optional[float] = None, |
|
latents_mean: Optional[Tuple[float]] = None, |
|
latents_std: Optional[Tuple[float]] = None, |
|
force_upcast: float = True, |
|
use_quant_conv: bool = False, |
|
use_post_quant_conv: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.encoder = CogVideoXEncoder3D( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_eps=norm_eps, |
|
norm_num_groups=norm_num_groups, |
|
temporal_compression_ratio=temporal_compression_ratio, |
|
) |
|
self.decoder = CogVideoXDecoder3D( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_eps=norm_eps, |
|
norm_num_groups=norm_num_groups, |
|
temporal_compression_ratio=temporal_compression_ratio, |
|
) |
|
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None |
|
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None |
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.num_latent_frames_batch_size = 2 |
|
|
|
|
|
self.tile_sample_min_height = sample_height // 2 |
|
self.tile_sample_min_width = sample_width // 2 |
|
self.tile_latent_min_height = int( |
|
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) |
|
) |
|
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) |
|
|
|
|
|
|
|
|
|
self.tile_overlap_factor_height = 1 / 6 |
|
self.tile_overlap_factor_width = 1 / 5 |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): |
|
module.gradient_checkpointing = value |
|
|
|
def _clear_fake_context_parallel_cache(self): |
|
for name, module in self.named_modules(): |
|
if isinstance(module, CogVideoXCausalConv3d): |
|
logger.debug(f"Clearing fake Context Parallel cache for layer: {name}") |
|
module._clear_fake_context_parallel_cache() |
|
|
|
def enable_tiling( |
|
self, |
|
tile_sample_min_height: Optional[int] = None, |
|
tile_sample_min_width: Optional[int] = None, |
|
tile_overlap_factor_height: Optional[float] = None, |
|
tile_overlap_factor_width: Optional[float] = None, |
|
) -> None: |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
|
|
Args: |
|
tile_sample_min_height (`int`, *optional*): |
|
The minimum height required for a sample to be separated into tiles across the height dimension. |
|
tile_sample_min_width (`int`, *optional*): |
|
The minimum width required for a sample to be separated into tiles across the width dimension. |
|
tile_overlap_factor_height (`int`, *optional*): |
|
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are |
|
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher |
|
value might cause more tiles to be processed leading to slow down of the decoding process. |
|
tile_overlap_factor_width (`int`, *optional*): |
|
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there |
|
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher |
|
value might cause more tiles to be processed leading to slow down of the decoding process. |
|
""" |
|
self.use_tiling = True |
|
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height |
|
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width |
|
self.tile_latent_min_height = int( |
|
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) |
|
) |
|
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) |
|
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height |
|
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width |
|
|
|
def disable_tiling(self) -> None: |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_tiling = False |
|
|
|
def enable_slicing(self) -> None: |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self) -> None: |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.Tensor, return_dict: bool = True |
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: |
|
""" |
|
Encode a batch of images into latents. |
|
|
|
Args: |
|
x (`torch.Tensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
batch_size, num_channels, num_frames, height, width = x.shape |
|
if num_frames == 1: |
|
h = self.encoder(x) |
|
if self.quant_conv is not None: |
|
h = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(h) |
|
else: |
|
frame_batch_size = 4 |
|
h = [] |
|
for i in range(num_frames // frame_batch_size): |
|
remaining_frames = num_frames % frame_batch_size |
|
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) |
|
end_frame = frame_batch_size * (i + 1) + remaining_frames |
|
z_intermediate = x[:, :, start_frame:end_frame] |
|
z_intermediate = self.encoder(z_intermediate) |
|
if self.quant_conv is not None: |
|
z_intermediate = self.quant_conv(z_intermediate) |
|
h.append(z_intermediate) |
|
self._clear_fake_context_parallel_cache() |
|
h = torch.cat(h, dim=2) |
|
posterior = DiagonalGaussianDistribution(h) |
|
if not return_dict: |
|
return (posterior,) |
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: |
|
batch_size, num_channels, num_frames, height, width = z.shape |
|
|
|
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): |
|
return self.tiled_decode(z, return_dict=return_dict) |
|
|
|
if num_frames == 1: |
|
dec = [] |
|
z_intermediate = z |
|
if self.post_quant_conv is not None: |
|
z_intermediate = self.post_quant_conv(z_intermediate) |
|
z_intermediate = self.decoder(z_intermediate) |
|
dec.append(z_intermediate) |
|
else: |
|
frame_batch_size = self.num_latent_frames_batch_size |
|
dec = [] |
|
for i in range(num_frames // frame_batch_size): |
|
remaining_frames = num_frames % frame_batch_size |
|
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) |
|
end_frame = frame_batch_size * (i + 1) + remaining_frames |
|
z_intermediate = z[:, :, start_frame:end_frame] |
|
if self.post_quant_conv is not None: |
|
z_intermediate = self.post_quant_conv(z_intermediate) |
|
z_intermediate = self.decoder(z_intermediate) |
|
dec.append(z_intermediate) |
|
|
|
self._clear_fake_context_parallel_cache() |
|
dec = torch.cat(dec, dim=2) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
@apply_forward_hook |
|
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: |
|
""" |
|
Decode a batch of images. |
|
|
|
Args: |
|
z (`torch.Tensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z).sample |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
return DecoderOutput(sample=decoded) |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( |
|
y / blend_extent |
|
) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[4], b.shape[4], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( |
|
x / blend_extent |
|
) |
|
return b |
|
|
|
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: |
|
r""" |
|
Decode a batch of images using a tiled decoder. |
|
|
|
Args: |
|
z (`torch.Tensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, num_channels, num_frames, height, width = z.shape |
|
|
|
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) |
|
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) |
|
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) |
|
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) |
|
row_limit_height = self.tile_sample_min_height - blend_extent_height |
|
row_limit_width = self.tile_sample_min_width - blend_extent_width |
|
frame_batch_size = self.num_latent_frames_batch_size |
|
|
|
|
|
|
|
rows = [] |
|
for i in range(0, height, overlap_height): |
|
row = [] |
|
for j in range(0, width, overlap_width): |
|
time = [] |
|
for k in range(num_frames // frame_batch_size): |
|
remaining_frames = num_frames % frame_batch_size |
|
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) |
|
end_frame = frame_batch_size * (k + 1) + remaining_frames |
|
tile = z[ |
|
:, |
|
:, |
|
start_frame:end_frame, |
|
i : i + self.tile_latent_min_height, |
|
j : j + self.tile_latent_min_width, |
|
] |
|
if self.post_quant_conv is not None: |
|
tile = self.post_quant_conv(tile) |
|
tile = self.decoder(tile) |
|
time.append(tile) |
|
self._clear_fake_context_parallel_cache() |
|
row.append(torch.cat(time, dim=2)) |
|
rows.append(row) |
|
|
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent_width) |
|
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) |
|
result_rows.append(torch.cat(result_row, dim=4)) |
|
|
|
dec = torch.cat(result_rows, dim=3) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[torch.Tensor, torch.Tensor]: |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z) |
|
if not return_dict: |
|
return (dec,) |
|
return dec |
|
|