|
"""Modified from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import gc |
|
import logging |
|
import math |
|
import os |
|
import pickle |
|
import shutil |
|
import sys |
|
|
|
import accelerate |
|
import diffusers |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.state import AcceleratorState |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from diffusers import AutoencoderKL, DDPMScheduler |
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import check_min_version, deprecate, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
from einops import rearrange |
|
from huggingface_hub import create_repo, upload_folder |
|
from omegaconf import OmegaConf |
|
from packaging import version |
|
from PIL import Image |
|
from torch.utils.data import RandomSampler |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, MT5Tokenizer, |
|
T5EncoderModel, T5Tokenizer) |
|
from transformers.utils import ContextManagers |
|
|
|
import datasets |
|
|
|
current_file_path = os.path.abspath(__file__) |
|
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path))] |
|
for project_root in project_roots: |
|
sys.path.insert(0, project_root) if project_root not in sys.path else None |
|
|
|
from cogvideox.data.bucket_sampler import (ASPECT_RATIO_512, |
|
ASPECT_RATIO_RANDOM_CROP_512, |
|
ASPECT_RATIO_RANDOM_CROP_PROB, |
|
AspectRatioBatchImageVideoSampler, |
|
RandomSampler, get_closest_ratio) |
|
from cogvideox.data.dataset_image_video import (ImageVideoDataset, ImageVideoControlDataset, |
|
ImageVideoSampler, |
|
get_random_mask) |
|
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX |
|
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel |
|
from cogvideox.pipeline.pipeline_cogvideox_control import \ |
|
CogVideoX_Fun_Pipeline_Control |
|
from cogvideox.utils.utils import get_video_to_video_latent, save_videos_grid |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
def get_random_downsample_ratio(sample_size, image_ratio=[], |
|
all_choices=False, rng=None): |
|
def _create_special_list(length): |
|
if length == 1: |
|
return [1.0] |
|
if length >= 2: |
|
first_element = 0.75 |
|
remaining_sum = 1.0 - first_element |
|
other_elements_value = remaining_sum / (length - 1) |
|
special_list = [first_element] + [other_elements_value] * (length - 1) |
|
return special_list |
|
|
|
if sample_size >= 1536: |
|
number_list = [1, 1.25, 1.5, 2, 2.5, 3] + image_ratio |
|
elif sample_size >= 1024: |
|
number_list = [1, 1.25, 1.5, 2] + image_ratio |
|
elif sample_size >= 768: |
|
number_list = [1, 1.25, 1.5] + image_ratio |
|
elif sample_size >= 512: |
|
number_list = [1] + image_ratio |
|
else: |
|
number_list = [1] |
|
|
|
if all_choices: |
|
return number_list |
|
|
|
number_list_prob = np.array(_create_special_list(len(number_list))) |
|
if rng is None: |
|
return np.random.choice(number_list, p = number_list_prob) |
|
else: |
|
return rng.choice(number_list, p = number_list_prob) |
|
|
|
def resize_mask(mask, latent, process_first_frame_only=True): |
|
latent_size = latent.size() |
|
batch_size, channels, num_frames, height, width = mask.shape |
|
|
|
if process_first_frame_only: |
|
target_size = list(latent_size[2:]) |
|
target_size[0] = 1 |
|
first_frame_resized = F.interpolate( |
|
mask[:, :, 0:1, :, :], |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
|
|
target_size = list(latent_size[2:]) |
|
target_size[0] = target_size[0] - 1 |
|
if target_size[0] != 0: |
|
remaining_frames_resized = F.interpolate( |
|
mask[:, :, 1:, :, :], |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) |
|
else: |
|
resized_mask = first_frame_resized |
|
else: |
|
target_size = list(latent_size[2:]) |
|
resized_mask = F.interpolate( |
|
mask, |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
return resized_mask |
|
|
|
|
|
check_min_version("0.18.0.dev0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
def log_validation(vae, text_encoder, tokenizer, transformer3d, args, accelerator, weight_dtype, global_step): |
|
try: |
|
logger.info("Running validation... ") |
|
|
|
transformer3d_val = CogVideoXTransformer3DModel.from_pretrained_2d( |
|
args.pretrained_model_name_or_path, subfolder="transformer" |
|
).to(weight_dtype) |
|
transformer3d_val.load_state_dict(accelerator.unwrap_model(transformer3d).state_dict()) |
|
|
|
pipeline = CogVideoX_Fun_Pipeline_Control.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=accelerator.unwrap_model(vae).to(weight_dtype), |
|
text_encoder=accelerator.unwrap_model(text_encoder), |
|
tokenizer=tokenizer, |
|
transformer=transformer3d_val, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = pipeline.to(accelerator.device) |
|
|
|
if args.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
images = [] |
|
for i in range(len(args.validation_prompts)): |
|
with torch.no_grad(): |
|
with torch.autocast("cuda", dtype=weight_dtype): |
|
video_length = int(args.video_sample_n_frames // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if args.video_sample_n_frames != 1 else 1 |
|
input_video, input_video_mask, clip_image = get_video_to_video_latent(args.validation_paths[i], video_length=video_length, sample_size=[args.video_sample_size, args.video_sample_size]) |
|
sample = pipeline( |
|
args.validation_prompts[i], |
|
num_frames = video_length, |
|
negative_prompt = "bad detailed", |
|
height = args.video_sample_size, |
|
width = args.video_sample_size, |
|
generator = generator, |
|
|
|
control_video = input_video, |
|
).videos |
|
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True) |
|
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-{i}.gif")) |
|
|
|
del pipeline |
|
del transformer3d_val |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
return images |
|
except Exception as e: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
print(f"Eval error with info {e}") |
|
return None |
|
|
|
def linear_decay(initial_value, final_value, total_steps, current_step): |
|
if current_step >= total_steps: |
|
return final_value |
|
current_step = max(0, current_step) |
|
step_size = (final_value - initial_value) / total_steps |
|
current_value = initial_value + step_size * current_step |
|
return current_value |
|
|
|
def generate_timestep_with_lognorm(low, high, shape, device="cpu", generator=None): |
|
u = torch.normal(mean=0.0, std=1.0, size=shape, device=device, generator=generator) |
|
t = 1 / (1 + torch.exp(-u)) * (high - low) + low |
|
return torch.clip(t.to(torch.int32), low, high - 1) |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1." |
|
) |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. " |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_data_meta", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A csv containing the training data. " |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_paths", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=("A set of control videos evaluated every `--validation_epochs` and logged to `--report_to`."), |
|
) |
|
parser.add_argument( |
|
"--validation_prompts", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="sd-model-finetuned", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--use_came", |
|
action="store_true", |
|
help="whether to use came", |
|
) |
|
parser.add_argument( |
|
"--multi_stream", |
|
action="store_true", |
|
help="whether to use cuda multi-stream", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--vae_mini_batch", type=int, default=32, help="mini batch size for vae." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") |
|
parser.add_argument( |
|
"--non_ema_revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help=( |
|
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" |
|
" remote repository specified with --pretrained_model_name_or_path." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--prediction_type", |
|
type=str, |
|
default=None, |
|
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", |
|
) |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_model_info", action="store_true", help="Whether or not to report more info about model (such as norm, grad)." |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=5, |
|
help="Run validation every X epochs.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=2000, |
|
help="Run validation every X steps.", |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="text2image-fine-tune", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--snr_loss", action="store_true", help="Whether or not to use snr_loss." |
|
) |
|
parser.add_argument( |
|
"--not_sigma_loss", action="store_true", help="Whether or not to not use sigma_loss." |
|
) |
|
parser.add_argument( |
|
"--enable_text_encoder_in_dataloader", action="store_true", help="Whether or not to use text encoder in dataloader." |
|
) |
|
parser.add_argument( |
|
"--enable_bucket", action="store_true", help="Whether enable bucket sample in datasets." |
|
) |
|
parser.add_argument( |
|
"--random_ratio_crop", action="store_true", help="Whether enable random ratio crop sample in datasets." |
|
) |
|
parser.add_argument( |
|
"--random_frame_crop", action="store_true", help="Whether enable random frame crop sample in datasets." |
|
) |
|
parser.add_argument( |
|
"--random_hw_adapt", action="store_true", help="Whether enable random adapt height and width in datasets." |
|
) |
|
parser.add_argument( |
|
"--training_with_video_token_length", action="store_true", help="The training stage of the model in training.", |
|
) |
|
parser.add_argument( |
|
"--motion_sub_loss", action="store_true", help="Whether enable motion sub loss." |
|
) |
|
parser.add_argument( |
|
"--motion_sub_loss_ratio", type=float, default=0.25, help="The ratio of motion sub loss." |
|
) |
|
parser.add_argument( |
|
"--train_sampling_steps", |
|
type=int, |
|
default=1000, |
|
help="Run train_sampling_steps.", |
|
) |
|
parser.add_argument( |
|
"--keep_all_node_same_token_length", |
|
action="store_true", |
|
help="Reference of the length token.", |
|
) |
|
parser.add_argument( |
|
"--token_sample_size", |
|
type=int, |
|
default=512, |
|
help="Sample size of the token.", |
|
) |
|
parser.add_argument( |
|
"--video_sample_size", |
|
type=int, |
|
default=512, |
|
help="Sample size of the video.", |
|
) |
|
parser.add_argument( |
|
"--image_sample_size", |
|
type=int, |
|
default=512, |
|
help="Sample size of the video.", |
|
) |
|
parser.add_argument( |
|
"--video_sample_stride", |
|
type=int, |
|
default=4, |
|
help="Sample stride of the video.", |
|
) |
|
parser.add_argument( |
|
"--video_sample_n_frames", |
|
type=int, |
|
default=17, |
|
help="Num frame of video.", |
|
) |
|
parser.add_argument( |
|
"--video_repeat", |
|
type=int, |
|
default=0, |
|
help="Num of repeat video.", |
|
) |
|
parser.add_argument( |
|
"--transformer_path", |
|
type=str, |
|
default=None, |
|
help=("If you want to load the weight from other transformers, input its path."), |
|
) |
|
parser.add_argument( |
|
"--vae_path", |
|
type=str, |
|
default=None, |
|
help=("If you want to load the weight from other vaes, input its path."), |
|
) |
|
|
|
parser.add_argument( |
|
'--trainable_modules', |
|
nargs='+', |
|
help='Enter a list of trainable modules' |
|
) |
|
parser.add_argument( |
|
'--trainable_modules_low_learning_rate', |
|
nargs='+', |
|
default=[], |
|
help='Enter a list of trainable modules with lower learning rate' |
|
) |
|
parser.add_argument( |
|
'--tokenizer_max_length', |
|
type=int, |
|
default=226, |
|
help='Max length of tokenizer' |
|
) |
|
parser.add_argument( |
|
"--use_deepspeed", action="store_true", help="Whether or not to use deepspeed." |
|
) |
|
parser.add_argument( |
|
"--low_vram", action="store_true", help="Whether enable low_vram mode." |
|
) |
|
parser.add_argument( |
|
"--abnormal_norm_clip_start", |
|
type=int, |
|
default=1000, |
|
help=( |
|
'When do we start doing additional processing on abnormal gradients. ' |
|
), |
|
) |
|
parser.add_argument( |
|
"--initial_grad_norm_ratio", |
|
type=int, |
|
default=5, |
|
help=( |
|
'The initial gradient is relative to the multiple of the max_grad_norm. ' |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.non_ema_revision is None: |
|
args.non_ema_revision = args.revision |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
if args.non_ema_revision is not None: |
|
deprecate( |
|
"non_ema_revision!=None", |
|
"0.15.0", |
|
message=( |
|
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" |
|
" use `--variant=non_ema` instead." |
|
), |
|
) |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
if accelerator.is_main_process: |
|
writer = SummaryWriter(log_dir=logging_dir) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
rng = np.random.default_rng(np.random.PCG64(args.seed + accelerator.process_index)) |
|
torch_rng = torch.Generator(accelerator.device).manual_seed(args.seed + accelerator.process_index) |
|
else: |
|
rng = None |
|
torch_rng = None |
|
index_rng = np.random.default_rng(np.random.PCG64(43)) |
|
print(f"Init rng with seed {args.seed + accelerator.process_index}. Process_index is {accelerator.process_index}") |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
args.mixed_precision = accelerator.mixed_precision |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
args.mixed_precision = accelerator.mixed_precision |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
tokenizer = T5Tokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision |
|
) |
|
|
|
def deepspeed_zero_init_disabled_context_manager(): |
|
""" |
|
returns either a context list that includes one that will disable zero.Init or an empty context list |
|
""" |
|
deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None |
|
if deepspeed_plugin is None: |
|
return [] |
|
|
|
return [deepspeed_plugin.zero3_init_context_manager(enable=False)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with ContextManagers(deepspeed_zero_init_disabled_context_manager()): |
|
text_encoder = T5EncoderModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant, |
|
torch_dtype=weight_dtype |
|
) |
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant |
|
) |
|
|
|
transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d( |
|
args.pretrained_model_name_or_path, subfolder="transformer" |
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
transformer3d.requires_grad_(False) |
|
|
|
if args.transformer_path is not None: |
|
print(f"From checkpoint: {args.transformer_path}") |
|
if args.transformer_path.endswith("safetensors"): |
|
from safetensors.torch import load_file, safe_open |
|
state_dict = load_file(args.transformer_path) |
|
else: |
|
state_dict = torch.load(args.transformer_path, map_location="cpu") |
|
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict |
|
|
|
m, u = transformer3d.load_state_dict(state_dict, strict=False) |
|
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") |
|
assert len(u) == 0 |
|
|
|
if args.vae_path is not None: |
|
print(f"From checkpoint: {args.vae_path}") |
|
if args.vae_path.endswith("safetensors"): |
|
from safetensors.torch import load_file, safe_open |
|
state_dict = load_file(args.vae_path) |
|
else: |
|
state_dict = torch.load(args.vae_path, map_location="cpu") |
|
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict |
|
|
|
m, u = vae.load_state_dict(state_dict, strict=False) |
|
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") |
|
assert len(u) == 0 |
|
|
|
|
|
|
|
|
|
transformer3d.train() |
|
if accelerator.is_main_process: |
|
accelerator.print( |
|
f"Trainable modules '{args.trainable_modules}'." |
|
) |
|
for name, param in transformer3d.named_parameters(): |
|
for trainable_module_name in args.trainable_modules + args.trainable_modules_low_learning_rate: |
|
if trainable_module_name in name: |
|
param.requires_grad = True |
|
break |
|
|
|
|
|
if args.use_ema: |
|
ema_transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d( |
|
args.pretrained_model_name_or_path, subfolder="transformer" |
|
) |
|
ema_transformer3d = EMAModel(ema_transformer3d.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=ema_transformer3d.config) |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_transformer3d.save_pretrained(os.path.join(output_dir, "transformer_ema")) |
|
|
|
models[0].save_pretrained(os.path.join(output_dir, "transformer")) |
|
if not args.use_deepspeed: |
|
weights.pop() |
|
|
|
with open(os.path.join(output_dir, "sampler_pos_start.pkl"), 'wb') as file: |
|
pickle.dump([batch_sampler.sampler._pos_start, first_epoch], file) |
|
|
|
def load_model_hook(models, input_dir): |
|
if args.use_ema: |
|
ema_path = os.path.join(input_dir, "transformer_ema") |
|
_, ema_kwargs = CogVideoXTransformer3DModel.load_config(ema_path, return_unused_kwargs=True) |
|
load_model = CogVideoXTransformer3DModel.from_pretrained_2d( |
|
input_dir, subfolder="transformer_ema" |
|
) |
|
load_model = EMAModel(load_model.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=load_model.config) |
|
load_model.load_state_dict(ema_kwargs) |
|
|
|
ema_transformer3d.load_state_dict(load_model.state_dict()) |
|
ema_transformer3d.to(accelerator.device) |
|
del load_model |
|
|
|
for i in range(len(models)): |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = CogVideoXTransformer3DModel.from_pretrained_2d( |
|
input_dir, subfolder="transformer" |
|
) |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
pkl_path = os.path.join(input_dir, "sampler_pos_start.pkl") |
|
if os.path.exists(pkl_path): |
|
with open(pkl_path, 'rb') as file: |
|
loaded_number, _ = pickle.load(file) |
|
batch_sampler.sampler._pos_start = max(loaded_number - args.dataloader_num_workers * accelerator.num_processes * 2, 0) |
|
print(f"Load pkl from {pkl_path}. Get loaded_number = {loaded_number}.") |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
if args.gradient_checkpointing: |
|
transformer3d.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
elif args.use_came: |
|
try: |
|
from came_pytorch import CAME |
|
except: |
|
raise ImportError( |
|
"Please install came_pytorch to use CAME. You can do so by running `pip install came_pytorch`" |
|
) |
|
|
|
optimizer_cls = CAME |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
trainable_params = list(filter(lambda p: p.requires_grad, transformer3d.parameters())) |
|
trainable_params_optim = [ |
|
{'params': [], 'lr': args.learning_rate}, |
|
{'params': [], 'lr': args.learning_rate / 2}, |
|
] |
|
in_already = [] |
|
for name, param in transformer3d.named_parameters(): |
|
high_lr_flag = False |
|
if name in in_already: |
|
continue |
|
for trainable_module_name in args.trainable_modules: |
|
if trainable_module_name in name: |
|
in_already.append(name) |
|
high_lr_flag = True |
|
trainable_params_optim[0]['params'].append(param) |
|
if accelerator.is_main_process: |
|
print(f"Set {name} to lr : {args.learning_rate}") |
|
break |
|
if high_lr_flag: |
|
continue |
|
for trainable_module_name in args.trainable_modules_low_learning_rate: |
|
if trainable_module_name in name: |
|
in_already.append(name) |
|
trainable_params_optim[1]['params'].append(param) |
|
if accelerator.is_main_process: |
|
print(f"Set {name} to lr : {args.learning_rate / 2}") |
|
break |
|
|
|
if args.use_came: |
|
optimizer = optimizer_cls( |
|
trainable_params_optim, |
|
lr=args.learning_rate, |
|
|
|
betas=(0.9, 0.999, 0.9999), |
|
eps=(1e-30, 1e-16) |
|
) |
|
else: |
|
optimizer = optimizer_cls( |
|
trainable_params_optim, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
sample_n_frames_bucket_interval = 4 |
|
|
|
train_dataset = ImageVideoControlDataset( |
|
args.train_data_meta, args.train_data_dir, |
|
video_sample_size=args.video_sample_size, video_sample_stride=args.video_sample_stride, video_sample_n_frames=args.video_sample_n_frames, |
|
video_repeat=args.video_repeat, |
|
image_sample_size=args.image_sample_size, |
|
enable_bucket=args.enable_bucket, enable_inpaint=False, |
|
) |
|
|
|
if args.enable_bucket: |
|
aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} |
|
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} |
|
|
|
batch_sampler_generator = torch.Generator().manual_seed(args.seed) |
|
batch_sampler = AspectRatioBatchImageVideoSampler( |
|
sampler=RandomSampler(train_dataset, generator=batch_sampler_generator), dataset=train_dataset.dataset, |
|
batch_size=args.train_batch_size, train_folder = args.train_data_dir, drop_last=True, |
|
aspect_ratios=aspect_ratio_sample_size, |
|
) |
|
if args.keep_all_node_same_token_length: |
|
if args.token_sample_size > 256: |
|
numbers_list = list(range(256, args.token_sample_size + 1, 128)) |
|
|
|
if numbers_list[-1] != args.token_sample_size: |
|
numbers_list.append(args.token_sample_size) |
|
else: |
|
numbers_list = [256] |
|
numbers_list = [_number * _number * args.video_sample_n_frames for _number in numbers_list] |
|
else: |
|
numbers_list = None |
|
|
|
def get_length_to_frame_num(token_length): |
|
if args.image_sample_size > args.video_sample_size: |
|
sample_sizes = list(range(256, args.image_sample_size + 1, 128)) |
|
|
|
if sample_sizes[-1] != args.image_sample_size: |
|
sample_sizes.append(args.image_sample_size) |
|
else: |
|
sample_sizes = [256] |
|
|
|
length_to_frame_num = { |
|
sample_size: min(token_length / sample_size / sample_size, args.video_sample_n_frames) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 for sample_size in sample_sizes |
|
} |
|
|
|
return length_to_frame_num |
|
|
|
def collate_fn(examples): |
|
target_token_length = args.video_sample_n_frames * args.token_sample_size * args.token_sample_size |
|
length_to_frame_num = get_length_to_frame_num( |
|
target_token_length, |
|
) |
|
|
|
|
|
new_examples = {} |
|
new_examples["target_token_length"] = target_token_length |
|
new_examples["pixel_values"] = [] |
|
new_examples["text"] = [] |
|
new_examples["control_pixel_values"] = [] |
|
|
|
|
|
pixel_value = examples[0]["pixel_values"] |
|
data_type = examples[0]["data_type"] |
|
f, h, w, c = np.shape(pixel_value) |
|
if data_type == 'image': |
|
random_downsample_ratio = 1 if not args.random_hw_adapt else get_random_downsample_ratio(args.image_sample_size, image_ratio=[args.image_sample_size / args.video_sample_size], rng=rng) |
|
|
|
aspect_ratio_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} |
|
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} |
|
|
|
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval |
|
else: |
|
if args.random_hw_adapt: |
|
if args.training_with_video_token_length: |
|
local_min_size = np.min(np.array([np.mean(np.array([np.shape(example["pixel_values"])[1], np.shape(example["pixel_values"])[2]])) for example in examples])) |
|
choice_list = [length for length in list(length_to_frame_num.keys()) if length < local_min_size * 1.25] |
|
if len(choice_list) == 0: |
|
choice_list = list(length_to_frame_num.keys()) |
|
if rng is None: |
|
local_video_sample_size = np.random.choice(choice_list) |
|
else: |
|
local_video_sample_size = rng.choice(choice_list) |
|
batch_video_length = length_to_frame_num[local_video_sample_size] |
|
random_downsample_ratio = args.video_sample_size / local_video_sample_size |
|
else: |
|
random_downsample_ratio = get_random_downsample_ratio( |
|
args.video_sample_size, rng=rng) |
|
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval |
|
else: |
|
random_downsample_ratio = 1 |
|
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval |
|
|
|
aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} |
|
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} |
|
|
|
closest_size, closest_ratio = get_closest_ratio(h, w, ratios=aspect_ratio_sample_size) |
|
closest_size = [int(x / 16) * 16 for x in closest_size] |
|
if args.random_ratio_crop: |
|
if rng is None: |
|
random_sample_size = aspect_ratio_random_crop_sample_size[ |
|
np.random.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB) |
|
] |
|
else: |
|
random_sample_size = aspect_ratio_random_crop_sample_size[ |
|
rng.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB) |
|
] |
|
random_sample_size = [int(x / 16) * 16 for x in random_sample_size] |
|
|
|
for example in examples: |
|
if args.random_ratio_crop: |
|
pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous() |
|
pixel_values = pixel_values / 255. |
|
|
|
control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous() |
|
control_pixel_values = control_pixel_values / 255. |
|
|
|
|
|
b, c, h, w = pixel_values.size() |
|
th, tw = random_sample_size |
|
if th / tw > h / w: |
|
nh = int(th) |
|
nw = int(w / h * nh) |
|
else: |
|
nw = int(tw) |
|
nh = int(h / w * nw) |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize([nh, nw]), |
|
transforms.CenterCrop([int(x) for x in random_sample_size]), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
]) |
|
else: |
|
closest_size = list(map(lambda x: int(x), closest_size)) |
|
if closest_size[0] / h > closest_size[1] / w: |
|
resize_size = closest_size[0], int(w * closest_size[0] / h) |
|
else: |
|
resize_size = int(h * closest_size[1] / w), closest_size[1] |
|
|
|
pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous() |
|
pixel_values = pixel_values / 255. |
|
|
|
control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous() |
|
control_pixel_values = control_pixel_values / 255. |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize(resize_size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(closest_size), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
]) |
|
new_examples["pixel_values"].append(transform(pixel_values)) |
|
new_examples["control_pixel_values"].append(transform(control_pixel_values)) |
|
new_examples["text"].append(example["text"]) |
|
batch_video_length = int( |
|
min( |
|
batch_video_length, |
|
(len(pixel_values) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1, |
|
) |
|
) |
|
|
|
if batch_video_length == 0: |
|
batch_video_length = 1 |
|
|
|
new_examples["pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["pixel_values"]]) |
|
new_examples["control_pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["control_pixel_values"]]) |
|
|
|
if args.enable_text_encoder_in_dataloader: |
|
prompt_ids = tokenizer( |
|
new_examples['text'], |
|
max_length=args.tokenizer_max_length, |
|
padding="max_length", |
|
add_special_tokens=True, |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
encoder_hidden_states = text_encoder( |
|
prompt_ids.input_ids, |
|
return_dict=False |
|
)[0] |
|
new_examples['encoder_attention_mask'] = prompt_ids.attention_mask |
|
new_examples['encoder_hidden_states'] = encoder_hidden_states |
|
|
|
return new_examples |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_sampler=batch_sampler, |
|
collate_fn=collate_fn, |
|
persistent_workers=True if args.dataloader_num_workers != 0 else False, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
else: |
|
|
|
batch_sampler_generator = torch.Generator().manual_seed(args.seed) |
|
batch_sampler = ImageVideoSampler(RandomSampler(train_dataset, generator=batch_sampler_generator), train_dataset, args.train_batch_size) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_sampler=batch_sampler, |
|
persistent_workers=True if args.dataloader_num_workers != 0 else False, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
) |
|
|
|
|
|
transformer3d, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
transformer3d, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
if args.use_ema: |
|
ema_transformer3d.to(accelerator.device) |
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
if not args.enable_text_encoder_in_dataloader: |
|
text_encoder.to(accelerator.device) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
tracker_config.pop("validation_prompts") |
|
tracker_config.pop("validation_paths") |
|
tracker_config.pop("trainable_modules") |
|
tracker_config.pop("trainable_modules_low_learning_rate") |
|
accelerator.init_trackers(args.tracker_project_name, tracker_config) |
|
|
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
|
|
pkl_path = os.path.join(os.path.join(args.output_dir, path), "sampler_pos_start.pkl") |
|
if os.path.exists(pkl_path): |
|
with open(pkl_path, 'rb') as file: |
|
_, first_epoch = pickle.load(file) |
|
else: |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
print(f"Load pkl from {pkl_path}. Get first_epoch = {first_epoch}.") |
|
|
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
if args.multi_stream: |
|
|
|
vae_stream_1 = torch.cuda.Stream() |
|
vae_stream_2 = torch.cuda.Stream() |
|
else: |
|
vae_stream_1 = None |
|
vae_stream_2 = None |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
train_loss = 0.0 |
|
batch_sampler.sampler.generator = torch.Generator().manual_seed(args.seed + epoch) |
|
for step, batch in enumerate(train_dataloader): |
|
|
|
if epoch == first_epoch and step == 0: |
|
pixel_values, texts = batch['pixel_values'].cpu(), batch['text'] |
|
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w") |
|
os.makedirs(os.path.join(args.output_dir, "sanity_check"), exist_ok=True) |
|
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)): |
|
pixel_value = pixel_value[None, ...] |
|
gif_name = '-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{global_step}-{idx}' |
|
save_videos_grid(pixel_value, f"{args.output_dir}/sanity_check/{gif_name[:10]}.gif", rescale=True) |
|
|
|
with accelerator.accumulate(transformer3d): |
|
|
|
pixel_values = batch["pixel_values"].to(weight_dtype) |
|
control_pixel_values = batch["control_pixel_values"].to(weight_dtype) |
|
if args.training_with_video_token_length: |
|
if args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 16 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]: |
|
pixel_values = torch.tile(pixel_values, (4, 1, 1, 1, 1)) |
|
control_pixel_values = torch.tile(control_pixel_values, (4, 1, 1, 1, 1)) |
|
if args.enable_text_encoder_in_dataloader: |
|
batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (4, 1, 1)) |
|
batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (4, 1)) |
|
else: |
|
batch['text'] = batch['text'] * 4 |
|
elif args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 4 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]: |
|
pixel_values = torch.tile(pixel_values, (2, 1, 1, 1, 1)) |
|
control_pixel_values = torch.tile(control_pixel_values, (2, 1, 1, 1, 1)) |
|
if args.enable_text_encoder_in_dataloader: |
|
batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (2, 1, 1)) |
|
batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (2, 1)) |
|
else: |
|
batch['text'] = batch['text'] * 2 |
|
|
|
def create_special_list(length): |
|
if length == 1: |
|
return [1.0] |
|
if length >= 2: |
|
last_element = 0.90 |
|
remaining_sum = 1.0 - last_element |
|
other_elements_value = remaining_sum / (length - 1) |
|
special_list = [other_elements_value] * (length - 1) + [last_element] |
|
return special_list |
|
|
|
if args.keep_all_node_same_token_length: |
|
actual_token_length = index_rng.choice(numbers_list) |
|
|
|
actual_video_length = (min( |
|
actual_token_length / pixel_values.size()[-1] / pixel_values.size()[-2], args.video_sample_n_frames |
|
) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 |
|
actual_video_length = int(max(actual_video_length, 1)) |
|
else: |
|
actual_video_length = None |
|
|
|
if args.random_frame_crop: |
|
select_frames = [_tmp for _tmp in list(range(sample_n_frames_bucket_interval + 1, args.video_sample_n_frames + sample_n_frames_bucket_interval, sample_n_frames_bucket_interval))] |
|
select_frames_prob = np.array(create_special_list(len(select_frames))) |
|
|
|
if rng is None: |
|
temp_n_frames = np.random.choice(select_frames, p = select_frames_prob) |
|
else: |
|
temp_n_frames = rng.choice(select_frames, p = select_frames_prob) |
|
if args.keep_all_node_same_token_length: |
|
temp_n_frames = min(actual_video_length, temp_n_frames) |
|
|
|
pixel_values = pixel_values[:, :temp_n_frames, :, :] |
|
control_pixel_values = control_pixel_values[:, :temp_n_frames, :, :] |
|
|
|
if args.low_vram: |
|
torch.cuda.empty_cache() |
|
vae.to(accelerator.device) |
|
if not args.enable_text_encoder_in_dataloader: |
|
text_encoder.to(accelerator.device) |
|
|
|
with torch.no_grad(): |
|
|
|
def _slice_vae(pixel_values): |
|
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w") |
|
bs = args.vae_mini_batch |
|
new_pixel_values = [] |
|
for i in range(0, pixel_values.shape[0], bs): |
|
pixel_values_bs = pixel_values[i : i + bs] |
|
pixel_values_bs = vae.encode(pixel_values_bs)[0] |
|
pixel_values_bs = pixel_values_bs.sample() |
|
new_pixel_values.append(pixel_values_bs) |
|
vae._clear_fake_context_parallel_cache() |
|
return torch.cat(new_pixel_values, dim = 0) |
|
if vae_stream_1 is not None: |
|
vae_stream_1.wait_stream(torch.cuda.current_stream()) |
|
with torch.cuda.stream(vae_stream_1): |
|
latents = _slice_vae(pixel_values) |
|
else: |
|
latents = _slice_vae(pixel_values) |
|
latents = latents * vae.config.scaling_factor |
|
|
|
control_latents = _slice_vae(control_pixel_values) |
|
control_latents = control_latents * vae.config.scaling_factor |
|
control_latents = rearrange(control_latents, "b c f h w -> b f c h w") |
|
|
|
latents = rearrange(latents, "b c f h w -> b f c h w") |
|
|
|
|
|
if vae_stream_1 is not None: |
|
torch.cuda.current_stream().wait_stream(vae_stream_1) |
|
|
|
if args.low_vram: |
|
vae.to('cpu') |
|
torch.cuda.empty_cache() |
|
if not args.enable_text_encoder_in_dataloader: |
|
text_encoder.to(accelerator.device) |
|
|
|
if args.enable_text_encoder_in_dataloader: |
|
prompt_embeds = batch['encoder_hidden_states'].to(device=latents.device) |
|
else: |
|
with torch.no_grad(): |
|
prompt_ids = tokenizer( |
|
batch['text'], |
|
max_length=args.tokenizer_max_length, |
|
padding="max_length", |
|
add_special_tokens=True, |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
prompt_embeds = text_encoder( |
|
prompt_ids.input_ids.to(latents.device), |
|
return_dict=False |
|
)[0] |
|
|
|
if args.low_vram and not args.enable_text_encoder_in_dataloader: |
|
text_encoder.to('cpu') |
|
torch.cuda.empty_cache() |
|
|
|
bsz = latents.shape[0] |
|
noise = torch.randn(latents.size(), device=latents.device, generator=torch_rng, dtype=weight_dtype) |
|
|
|
|
|
timesteps = torch.randint(0, args.train_sampling_steps, (bsz,), device=latents.device, generator=torch_rng) |
|
timesteps = timesteps.long() |
|
|
|
|
|
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): |
|
tw = tgt_width |
|
th = tgt_height |
|
h, w = src |
|
r = h / w |
|
if r > (th / tw): |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
def _prepare_rotary_positional_embeddings( |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
device: torch.device |
|
): |
|
vae_scale_factor_spatial = ( |
|
2 ** (len(vae.config.block_out_channels) - 1) if vae is not None else 8 |
|
) |
|
grid_height = height // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) |
|
grid_width = width // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) |
|
base_size_width = 720 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) |
|
base_size_height = 480 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) |
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid( |
|
(grid_height, grid_width), base_size_width, base_size_height |
|
) |
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=unwrap_model(transformer3d).config.attention_head_dim, |
|
crops_coords=grid_crops_coords, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=num_frames, |
|
use_real=True, |
|
) |
|
freqs_cos = freqs_cos.to(device=device) |
|
freqs_sin = freqs_sin.to(device=device) |
|
return freqs_cos, freqs_sin |
|
|
|
height, width = batch["pixel_values"].size()[-2], batch["pixel_values"].size()[-1] |
|
|
|
image_rotary_emb = ( |
|
_prepare_rotary_positional_embeddings(height, width, latents.size(1), latents.device) |
|
if unwrap_model(transformer3d).config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
prompt_embeds = prompt_embeds.to(device=latents.device) |
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
|
|
noise_pred = transformer3d( |
|
hidden_states=noisy_latents, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timesteps, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=False, |
|
control_latents=control_latents, |
|
)[0] |
|
print(noise_pred.size(), noisy_latents.size(), latents.size(), pixel_values.size()) |
|
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") |
|
|
|
if args.motion_sub_loss and noise_pred.size()[1] > 2: |
|
gt_sub_noise = noise_pred[:, 1:, :].float() - noise_pred[:, :-1, :].float() |
|
pre_sub_noise = target[:, 1:, :].float() - target[:, :-1, :].float() |
|
sub_loss = F.mse_loss(gt_sub_noise, pre_sub_noise, reduction="mean") |
|
loss = loss * (1 - args.motion_sub_loss_ratio) + sub_loss * args.motion_sub_loss_ratio |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
train_loss += avg_loss.item() / args.gradient_accumulation_steps |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
if not args.use_deepspeed: |
|
trainable_params_grads = [p.grad for p in trainable_params if p.grad is not None] |
|
trainable_params_total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2) for g in trainable_params_grads]), 2) |
|
max_grad_norm = linear_decay(args.max_grad_norm * args.initial_grad_norm_ratio, args.max_grad_norm, args.abnormal_norm_clip_start, global_step) |
|
if trainable_params_total_norm / max_grad_norm > 5 and global_step > args.abnormal_norm_clip_start: |
|
actual_max_grad_norm = max_grad_norm / min((trainable_params_total_norm / max_grad_norm), 10) |
|
else: |
|
actual_max_grad_norm = max_grad_norm |
|
else: |
|
actual_max_grad_norm = args.max_grad_norm |
|
|
|
if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process: |
|
if trainable_params_total_norm > 1 and global_step > args.abnormal_norm_clip_start: |
|
for name, param in transformer3d.named_parameters(): |
|
if param.requires_grad: |
|
writer.add_scalar(f'gradients/before_clip_norm/{name}', param.grad.norm(), global_step=global_step) |
|
|
|
norm_sum = accelerator.clip_grad_norm_(trainable_params, actual_max_grad_norm) |
|
if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process: |
|
writer.add_scalar(f'gradients/norm_sum', norm_sum, global_step=global_step) |
|
writer.add_scalar(f'gradients/actual_max_grad_norm', actual_max_grad_norm, global_step=global_step) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
|
if args.use_ema: |
|
ema_transformer3d.step(transformer3d.parameters()) |
|
progress_bar.update(1) |
|
global_step += 1 |
|
accelerator.log({"train_loss": train_loss}, step=global_step) |
|
train_loss = 0.0 |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if args.use_deepspeed or accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompts is not None and global_step % args.validation_steps == 0: |
|
if args.use_ema: |
|
|
|
ema_transformer3d.store(transformer3d.parameters()) |
|
ema_transformer3d.copy_to(transformer3d.parameters()) |
|
log_validation( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
transformer3d, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
global_step, |
|
) |
|
if args.use_ema: |
|
|
|
ema_transformer3d.restore(transformer3d.parameters()) |
|
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompts is not None and epoch % args.validation_epochs == 0: |
|
if args.use_ema: |
|
|
|
ema_transformer3d.store(transformer3d.parameters()) |
|
ema_transformer3d.copy_to(transformer3d.parameters()) |
|
log_validation( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
transformer3d, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
global_step, |
|
) |
|
if args.use_ema: |
|
|
|
ema_transformer3d.restore(transformer3d.parameters()) |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
transformer3d = unwrap_model(transformer3d) |
|
if args.use_ema: |
|
ema_transformer3d.copy_to(transformer3d.parameters()) |
|
|
|
if args.use_deepspeed or accelerator.is_main_process: |
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|