import json import os import runpod import numpy as np import torch import requests import uuid from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, PNDMScheduler) from transformers import T5EncoderModel, T5Tokenizer from omegaconf import OmegaConf from PIL import Image from cogvideox.models.transformer3d import CogVideoXTransformer3DModel from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint from cogvideox.utils.lora_utils import merge_lora, unmerge_lora from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid, ASPECT_RATIO_512, get_closest_ratio, to_pil from huggingface_hub import HfApi, HfFolder tokenxf = os.getenv("HF_API_TOKEN") # Low GPU memory mode low_gpu_memory_mode = False lora_path = "/content/shirtlift.safetensors" def download_image(url, download_dir="asset"): # Ensure the download directory exists if not os.path.exists(download_dir): os.makedirs(download_dir, exist_ok=True) # Send the request and check for successful response response = requests.get(url, stream=True) if response.status_code == 200: # Determine file extension based on content type content_type = response.headers.get("Content-Type") if content_type == "image/png": ext = "png" elif content_type == "image/jpeg": ext = "jpg" else: ext = "jpg" # default to .jpg if content type is unrecognized # Generate a random filename with the correct extension filename = f"{uuid.uuid4().hex}.{ext}" file_path = os.path.join(download_dir, filename) # Save the image with open(file_path, "wb") as f: for chunk in response.iter_content(1024): f.write(chunk) print(f"Image downloaded to {file_path}") return file_path else: raise Exception(f"Failed to download image from {url}, status code: {response.status_code}") # Usage # validation_image_start = values.get("validation_image_start", "https://example.com/path/to/image.png") # downloaded_image_path = download_image(validation_image_start) model_id = "/content/model" transformer = CogVideoXTransformer3DModel.from_pretrained_2d( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ).to(torch.bfloat16) vae = AutoencoderKLCogVideoX.from_pretrained( model_id, subfolder="vae" ).to(torch.bfloat16) text_encoder = T5EncoderModel.from_pretrained( model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16 ) sampler_dict = { "Euler": EulerDiscreteScheduler, "Euler A": EulerAncestralDiscreteScheduler, "DPM++": DPMSolverMultistepScheduler, "PNDM": PNDMScheduler, "DDIM_Cog": CogVideoXDDIMScheduler, "DDIM_Origin": DDIMScheduler, } scheduler = sampler_dict["DPM++"].from_pretrained(model_id, subfolder="scheduler") # Pipeline setup if transformer.config.in_channels != vae.config.latent_channels: pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained( model_id, vae=vae, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, torch_dtype=torch.bfloat16 ) else: pipeline = CogVideoX_Fun_Pipeline.from_pretrained( model_id, vae=vae, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, torch_dtype=torch.bfloat16 ) if low_gpu_memory_mode: pipeline.enable_sequential_cpu_offload() else: pipeline.enable_model_cpu_offload() @torch.inference_mode() def generate(input): values = input["input"] prompt = values["prompt"] negative_prompt = values.get("negative_prompt", "blurry, blurred, blurry face") guidance_scale = values.get("guidance_scale", 6.0) seed = values.get("seed", 42) num_inference_steps = values.get("num_inference_steps", 18) base_resolution = values.get("base_resolution", 512) video_length = values.get("video_length", 53) fps = values.get("fps", 10) lora_weight = values.get("lora_weight", 1.00) save_path = "samples" partial_video_length = values.get("partial_video_length", None) overlap_video_length = values.get("overlap_video_length", 4) validation_image_start = values.get("validation_image_start", "asset/1.png") downloaded_image_path = download_image(validation_image_start) validation_image_end = values.get("validation_image_end", None) generator = torch.Generator(device="cuda").manual_seed(seed) if lora_path is not None: pipeline = merge_lora(pipeline, lora_path, lora_weight) aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} start_img = Image.open(downloaded_image_path) original_width, original_height = start_img.size closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) height, width = [int(x / 16) * 16 for x in closest_size] sample_size = [height, width] if partial_video_length is not None: # Handle ultra-long video generation if required # ... (existing logic for partial video generation) else: # Standard video generation video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 input_video, input_video_mask, clip_image = get_image_to_video_latent(downloaded_image_path, validation_image_end, video_length=video_length, sample_size=sample_size) with torch.no_grad(): sample = pipeline( prompt=prompt, num_frames=video_length, negative_prompt=negative_prompt, height=sample_size[0], width=sample_size[1], generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, video=input_video, mask_video=input_video_mask ).videos if not os.path.exists(save_path): os.makedirs(save_path, exist_ok=True) index = len([path for path in os.listdir(save_path)]) + 1 prefix = str(index).zfill(8) video_path = os.path.join(save_path, f"{prefix}.mp4") save_videos_grid(sample, video_path, fps=fps) hf_api = HfApi() repo_id = "meepmoo/h4h4jejdf" # Set your HF repo hf_api.upload_file( path_or_fileobj=video_path, path_in_repo=f"{prefix}.mp4", repo_id=repo_id, token=tokenxf, repo_type="model" ) Prepare output result_url = f"https://huggingface.co/{repo_id}/blob/main/{prefix}.mp4" result_url = "" job_id = values.get("job_id", "default-job-id") # For RunPod job tracking return {"jobId": job_id, "result": result_url, "status": "DONE"} runpod.serverless.start({"handler": generate})