Spaces:
Runtime error
Runtime error
File size: 5,243 Bytes
0fb1163 dea9d86 0fb1163 dea9d86 0fb1163 0832bd7 d7fa53c 0fb1163 0832bd7 0fb1163 0832bd7 0fb1163 0832bd7 0fb1163 d7fa53c 0fb1163 88226d6 0832bd7 88226d6 0fb1163 0832bd7 0fb1163 0832bd7 0fb1163 0832bd7 0fb1163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from utils import (
convert_frames_to_gif,
download_youtube_video,
get_num_total_frames,
sample_frames_from_video_file,
)
FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
"microsoft/xclip-base-patch32",
"microsoft/xclip-base-patch16-zero-shot",
"microsoft/xclip-base-patch16-kinetics-600",
"microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames",
"microsoft/xclip-large-patch14",
"microsoft/xclip-base-patch16-hmdb-4-shot",
"microsoft/xclip-base-patch16-16-frames",
"microsoft/xclip-base-patch16-hmdb-2-shot",
"microsoft/xclip-base-patch16-ucf-2-shot",
"microsoft/xclip-base-patch16-ucf-8-shot",
"microsoft/xclip-base-patch16",
"microsoft/xclip-base-patch16-hmdb-8-shot",
"microsoft/xclip-base-patch16-hmdb-16-shot",
"microsoft/xclip-base-patch16-ucf-16-shot",
]
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)
examples = [
[
"https://www.youtu.be/l1dBM8ZECao",
"sleeping dog,cat fight club,birds of prey",
],
[
"https://youtu.be/VMj-3S1tku0",
"programming course,eating spaghetti,playing football",
],
[
"https://youtu.be/BRw7rvLdGzU",
"game of thrones,the lord of the rings,vikings",
],
]
def select_model(model_name):
global processor, model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def predict(youtube_url_or_file_path, labels_text):
if youtube_url_or_file_path.startswith("http"):
video_path = download_youtube_video(youtube_url_or_file_path)
else:
video_path = youtube_url_or_file_path
# rearrange sampling rate based on video length and model input length
num_total_frames = get_num_total_frames(video_path)
num_model_input_frames = model.config.vision_config.num_frames
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
frame_sampling_rate = num_total_frames // num_model_input_frames
else:
frame_sampling_rate = FRAME_SAMPLING_RATE
labels = labels_text.split(",")
frames = sample_frames_from_video_file(
video_path, num_model_input_frames, frame_sampling_rate
)
gif_path = convert_frames_to_gif(frames, save_path="video.gif")
inputs = processor(
text=labels, videos=list(frames), return_tensors="pt", padding=True
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
label_to_prob = {}
for ind, label in enumerate(labels):
label_to_prob[label] = float(probs[ind])
return label_to_prob, gif_path
app = gr.Blocks()
with app:
gr.Markdown(
"# **<p align='center'>PROGTOG VIOLENCE DETECTION</p>**"
)
with gr.Row():
with gr.Column():
model_names_dropdown = gr.Dropdown(
choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS,
label="Model:",
show_label=True,
value=DEFAULT_MODEL,
)
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
with gr.Tab(label="Youtube URL"):
gr.Markdown(
"### **Youtube URL**"
)
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
youtube_url_labels_text = gr.Textbox(
label="Labels Text:", show_label=True
)
youtube_url_predict_btn = gr.Button(value="Predict")
with gr.Tab(label="Local File"):
gr.Markdown(
"### **Tags**"
)
video_file = gr.Video(label="Video File:", show_label=True)
local_video_labels_text = gr.Textbox(
label="Labels Text:", show_label=True
)
local_video_predict_btn = gr.Button(value="Predict")
with gr.Column():
video_gif = gr.Image(
label="Input Clip",
show_label=True,
)
with gr.Column():
predictions = gr.Label(label="Predictions:", show_label=True)
# gr.Markdown("**Examples:**")
# gr.Examples(
# examples,
# [youtube_url, youtube_url_labels_text],
# [predictions, video_gif],
# fn=predict,
# cache_examples=True,
# )
youtube_url_predict_btn.click(
predict,
inputs=[youtube_url, youtube_url_labels_text],
outputs=[predictions, video_gif],
)
local_video_predict_btn.click(
predict,
inputs=[video_file, local_video_labels_text],
outputs=[predictions, video_gif],
)
# gr.Markdown(
# """
# \n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
# <br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>.
# """
# )
app.launch() |