File size: 5,243 Bytes
0fb1163
 
 
 
 
 
 
 
 
 
 
 
 
 
dea9d86
0fb1163
dea9d86
 
 
 
 
 
 
 
 
 
 
 
0fb1163
 
 
 
 
0832bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7fa53c
 
 
 
0fb1163
 
 
 
 
 
 
 
0832bd7
 
0fb1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0832bd7
0fb1163
 
 
 
 
 
 
 
 
 
 
 
 
 
0832bd7
0fb1163
 
 
 
d7fa53c
 
 
 
 
 
 
0fb1163
88226d6
0832bd7
88226d6
0fb1163
 
 
 
 
 
 
0832bd7
0fb1163
 
 
 
 
 
 
 
 
 
 
 
 
 
0832bd7
 
 
 
 
 
 
 
 
0fb1163
 
 
 
 
 
 
 
 
 
0832bd7
 
 
 
 
 
0fb1163
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from utils import (
    convert_frames_to_gif,
    download_youtube_video,
    get_num_total_frames,
    sample_frames_from_video_file,
)

FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"

VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
    "microsoft/xclip-base-patch32",
    "microsoft/xclip-base-patch16-zero-shot",
    "microsoft/xclip-base-patch16-kinetics-600",
    "microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames",
    "microsoft/xclip-large-patch14",
    "microsoft/xclip-base-patch16-hmdb-4-shot",
    "microsoft/xclip-base-patch16-16-frames",
    "microsoft/xclip-base-patch16-hmdb-2-shot",
    "microsoft/xclip-base-patch16-ucf-2-shot",
    "microsoft/xclip-base-patch16-ucf-8-shot",
    "microsoft/xclip-base-patch16",
    "microsoft/xclip-base-patch16-hmdb-8-shot",
    "microsoft/xclip-base-patch16-hmdb-16-shot",
    "microsoft/xclip-base-patch16-ucf-16-shot",
]

processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)

examples = [
    [
        "https://www.youtu.be/l1dBM8ZECao",
        "sleeping dog,cat fight club,birds of prey",
    ],
    [
        "https://youtu.be/VMj-3S1tku0",
        "programming course,eating spaghetti,playing football",
    ],
    [
        "https://youtu.be/BRw7rvLdGzU",
        "game of thrones,the lord of the rings,vikings",
    ],
]


def select_model(model_name):
    global processor, model
    processor = AutoProcessor.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)


def predict(youtube_url_or_file_path, labels_text):

    if youtube_url_or_file_path.startswith("http"):
        video_path = download_youtube_video(youtube_url_or_file_path)
    else:
        video_path = youtube_url_or_file_path

    # rearrange sampling rate based on video length and model input length
    num_total_frames = get_num_total_frames(video_path)
    num_model_input_frames = model.config.vision_config.num_frames
    if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
        frame_sampling_rate = num_total_frames // num_model_input_frames
    else:
        frame_sampling_rate = FRAME_SAMPLING_RATE

    labels = labels_text.split(",")

    frames = sample_frames_from_video_file(
        video_path, num_model_input_frames, frame_sampling_rate
    )
    gif_path = convert_frames_to_gif(frames, save_path="video.gif")

    inputs = processor(
        text=labels, videos=list(frames), return_tensors="pt", padding=True
    )
    # forward pass
    with torch.no_grad():
        outputs = model(**inputs)

    probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
    label_to_prob = {}
    for ind, label in enumerate(labels):
        label_to_prob[label] = float(probs[ind])

    return label_to_prob, gif_path


app = gr.Blocks()
with app:
    gr.Markdown(
        "# **<p align='center'>PROGTOG VIOLENCE DETECTION</p>**"
    )

    with gr.Row():
        with gr.Column():
            model_names_dropdown = gr.Dropdown(
                choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS,
                label="Model:",
                show_label=True,
                value=DEFAULT_MODEL,
            )
            model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
            with gr.Tab(label="Youtube URL"):
                gr.Markdown(
                    "### **Youtube URL**"
                )
                youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
                youtube_url_labels_text = gr.Textbox(
                    label="Labels Text:", show_label=True
                )
                youtube_url_predict_btn = gr.Button(value="Predict")
            with gr.Tab(label="Local File"):
                gr.Markdown(
                    "### **Tags**"
                )
                video_file = gr.Video(label="Video File:", show_label=True)
                local_video_labels_text = gr.Textbox(
                    label="Labels Text:", show_label=True
                )
                local_video_predict_btn = gr.Button(value="Predict")
        with gr.Column():
            video_gif = gr.Image(
                label="Input Clip",
                show_label=True,
            )
        with gr.Column():
            predictions = gr.Label(label="Predictions:", show_label=True)

    # gr.Markdown("**Examples:**")
    # gr.Examples(
    #     examples,
    #     [youtube_url, youtube_url_labels_text],
    #     [predictions, video_gif],
    #     fn=predict,
    #     cache_examples=True,
    # )

    youtube_url_predict_btn.click(
        predict,
        inputs=[youtube_url, youtube_url_labels_text],
        outputs=[predictions, video_gif],
    )
    local_video_predict_btn.click(
        predict,
        inputs=[video_file, local_video_labels_text],
        outputs=[predictions, video_gif],
    )
    # gr.Markdown(
    #     """
    #     \n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
    #     <br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>.
    #     """
    # )

app.launch()