Spaces:
Runtime error
Runtime error
File size: 28,941 Bytes
c334626 c81908d c334626 c81908d c334626 27911d6 c334626 27911d6 572f947 27911d6 c334626 be61cf2 c334626 c81908d c334626 c81908d c334626 c81908d 27911d6 c81908d 572f947 c81908d 8d2bdec 572f947 c81908d 8d2bdec c81908d be61cf2 c81908d be61cf2 8d2bdec c81908d 8d2bdec c81908d be61cf2 27911d6 be61cf2 c334626 be61cf2 c334626 27911d6 8d2bdec 3dcdf92 27911d6 8d2bdec 27911d6 8d2bdec e96a195 3dcdf92 be61cf2 9e9d0ce 3dcdf92 8d2bdec 27911d6 8d2bdec 3dcdf92 27911d6 8d2bdec be61cf2 8d2bdec 572f947 be61cf2 572f947 be61cf2 572f947 3dcdf92 572f947 8d2bdec c81908d 27911d6 8d2bdec 27911d6 8d2bdec 023c7dd 8d2bdec 3dcdf92 be61cf2 572f947 be61cf2 572f947 3dcdf92 27911d6 3dcdf92 8d2bdec be61cf2 3dcdf92 8d2bdec be61cf2 572f947 3dcdf92 8d2bdec 572f947 27911d6 8d2bdec be61cf2 8d2bdec 27911d6 be61cf2 27911d6 be61cf2 27911d6 be61cf2 27911d6 c334626 27911d6 9e9d0ce 27911d6 023c7dd 9e9d0ce c334626 9e9d0ce 572f947 9e9d0ce 3dcdf92 023c7dd 9e9d0ce 023c7dd 9e9d0ce 023c7dd 9e9d0ce 023c7dd 9e9d0ce 023c7dd 9e9d0ce 023c7dd c334626 c81908d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import numpy as np
import time
import os
import json
import torchvision
import random
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
from torch.nn.functional import adaptive_avg_pool2d
try:
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
from pytorch_fid.inception import InceptionV3
except ImportError:
pass
try:
import ImageReward as RM
except ImportError:
pass
try:
import clip
except ImportError:
pass
from encoder import build_encoder
from clip_encoder import CLIPImageEncoder
from model_configs import get_model_config
#%% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1. - torch.exp(2. * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1-betas)
return sigmas, a_s, betas
#%% posterior sampling
class Posterior_Coefficients():
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
#we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def predict_q_posterior(coefficients, x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def sample_posterior(coefficients, x_0,x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = (1 - (t == 0).type(torch.float32))
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
x = x_init
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device)
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
return x
def sample(generator, x_init, cond=None):
return sample_from_model(
generator.pos_coeff, generator, n_time=generator.config.num_timesteps, x_init=x_init,
T=generator.time_schedule, opt=generator.config, cond=cond
)
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
x = x_init
null = text_encoder([""] * len(x_init), return_only_pooled=False)
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0_uncond = generator(x, t_time, latent_z, cond=null)
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0_cond = generator(x, t_time, latent_z, cond=cond)
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
eps_cond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
# eps = eps_uncond + guidance_scale * (eps_cond - eps_uncond)
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
#x_0 = x_0_uncond * (1 - guidance_scale) + x_0_cond * guidance_scale
# Dynamic thresholding
q = opt.dynamic_thresholding_quantile
#print("Before", x_0.min(), x_0.max())
if q:
shape = x_0.shape
x_0_v = x_0.view(shape[0], -1)
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
d.clamp_(min=1)
x_0_v = x_0_v.clamp(-d, d) / d
x_0 = x_0_v.view(shape)
#print("After", x_0.min(), x_0.max())
x_new = sample_posterior(coefficients, x_0, x, t)
# Dynamic thresholding
# q = args.dynamic_thresholding_percentile
# shape = x_new.shape
# x_new_v = x_new.view(shape[0], -1)
# d = torch.quantile(torch.abs(x_new_v), q, dim=1, keepdim=True)
# d = torch.maximum(d, torch.ones_like(d))
# d.clamp_(min = 1.)
# x_new_v = torch.clamp(x_new_v, -d, d) / d
# x_new = x_new_v.view(shape)
x = x_new.detach()
return x
def sample_from_model_classifier_free_guidance_convolutional(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0, split_input_params=None):
x = x_init
null = text_encoder([""] * len(x_init), return_only_pooled=False)
#latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
ks = split_input_params["ks"] # eg. (128, 128)
stride = split_input_params["stride"] # eg. (64, 64)
uf = split_input_params["vqf"]
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
fold, unfold, normalization, weighting = get_fold_unfold(x, ks, stride, split_input_params, uf=uf)
x = unfold(x)
x = x.view((x.shape[0], -1, ks[0], ks[1], x.shape[-1]))
x_new_list = []
for j in range(x.shape[-1]):
x_0_uncond = generator(x[:,:,:,:,j], t_time, latent_z, cond=null)
x_0_cond = generator(x[:,:,:,:,j], t_time, latent_z, cond=cond)
eps_uncond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
eps_cond = (x[:,:,:,:,j] - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x[:,:,:,:,j] - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
q = args.dynamic_thresholding_quantile
if q:
shape = x_0.shape
x_0_v = x_0.view(shape[0], -1)
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
d.clamp_(min=1)
x_0_v = x_0_v.clamp(-d, d) / d
x_0 = x_0_v.view(shape)
x_new = sample_posterior(coefficients, x_0, x[:,:,:,:,j], t)
x_new_list.append(x_new)
o = torch.stack(x_new_list, axis=-1)
#o = o * weighting
o = o.view((o.shape[0], -1, o.shape[-1]))
decoded = fold(o)
decoded = decoded / normalization
x = decoded.detach()
return x
def sample_from_model_clip_guidance(coefficients, generator, clip_model, n_time, x_init, T, opt, texts, cond=None, guidance_scale=0):
x = x_init
text_features = torch.nn.functional.normalize(clip_model.forward_text(texts), dim=1)
n_time = 16
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i%4, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x.requires_grad = True
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x_new_n = (x_new + 1) / 2
image_features = torch.nn.functional.normalize(clip_model.forward_image(x_new_n), dim=1)
loss = (image_features*text_features).sum(dim=1).mean()
x_grad, = torch.autograd.grad(loss, x)
lr = 3000
x = x.detach()
print(x.min(),x.max(), lr*x_grad.min(), lr*x_grad.max())
x += x_grad * lr
with torch.no_grad():
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
print(i)
return x
def meshgrid(h, w):
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
arr = torch.cat([y, x], dim=-1)
return arr
def delta_border(h, w):
"""
:param h: height
:param w: width
:return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = meshgrid(h, w) / lower_right_corner
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
return edge_dist
def get_weighting(h, w, Ly, Lx, device, split_input_params):
weighting = delta_border(h, w)
weighting = torch.clip(weighting, split_input_params["clip_min_weight"],
split_input_params["clip_max_weight"], )
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
if split_input_params["tie_braker"]:
L_weighting = delta_border(Ly, Lx)
L_weighting = torch.clip(L_weighting,
split_input_params["clip_min_tie_weight"],
split_input_params["clip_max_tie_weight"])
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
weighting = weighting * L_weighting
return weighting
def get_fold_unfold(x, kernel_size, stride, split_input_params, uf=1, df=1): # todo load once not every time, shorten code
"""
:param x: img of size (bs, c, h, w)
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
"""
bs, nc, h, w = x.shape
# number of crops in image
Ly = (h - kernel_size[0]) // stride[0] + 1
Lx = (w - kernel_size[1]) // stride[1] + 1
if uf == 1 and df == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
weighting = get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device, split_input_params).to(x.dtype)
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
elif uf > 1 and df == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
dilation=1, padding=0,
stride=(stride[0] * uf, stride[1] * uf))
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
weighting = get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device, split_input_params).to(x.dtype)
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
elif df > 1 and uf == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
dilation=1, padding=0,
stride=(stride[0] // df, stride[1] // df))
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
weighting = get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device, split_input_params).to(x.dtype)
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
else:
raise NotImplementedError
return fold, unfold, normalization, weighting
class ObjectFromDict:
def __init__(self, d):
self.__dict__ = d
def load_model(config, path, device="cpu"):
config = ObjectFromDict(config)
text_encoder = build_encoder(name=config.text_encoder, masked_mean=config.masked_mean)
config.cond_size = text_encoder.output_size
netG = NCSNpp(config)
ckpt = torch.load(path, map_location="cpu")
for key in list(ckpt.keys()):
if key.startswith("module"):
ckpt[key[7:]] = ckpt.pop(key)
netG.load_state_dict(ckpt)
netG.eval()
netG.pos_coeff = Posterior_Coefficients(config, device)
netG.text_encoder = text_encoder
netG.config = config
netG.time_schedule = get_time_schedule(config, device)
netG = netG.to(device)
return netG
#%%
def sample_and_test(args):
torch.manual_seed(args.seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
to_range_0_1 = lambda x: (x + 1.) / 2.
if args.epoch_id == -1:
epochs = range(1000)
else:
epochs = [args.epoch_id]
if args.compute_image_reward:
#image_reward = RM.load("ImageReward-v1.0", download_root=".").to(device)
image_reward = RM.load("ImageReward.pt", download_root=".").to(device)
cfg = get_model_config(args.name)
for epoch in epochs:
args.epoch_id = epoch
path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(cfg['dataset'], args.name, args.epoch_id)
next_next_path = './saved_info/dd_gan/{}/{}/netG_{}.pth'.format(cfg['dataset'], args.name, args.epoch_id+2)
print(path)
if not os.path.exists(path):
continue
if not os.path.exists(next_next_path):
break
print("PATH", path)
suffix = '_' + args.eval_name if args.eval_name else ""
dest = './saved_info/dd_gan/{}/{}/eval_{}{}.json'.format(cfg['dataset'], args.name, args.epoch_id, suffix)
if (args.compute_fid or args.compute_clip_score or args.compute_image_reward) and os.path.exists(dest):
continue
print("Load epoch", args.epoch_id, "checkpoint")
netG = load_model(cfg, path, device=device)
save_dir = "./generated_samples/{}".format(cfg['dataset'])
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if args.compute_fid or args.compute_clip_score or args.compute_image_reward:
# Evaluate
random.seed(args.seed)
texts = open(args.cond_text).readlines()
texts = [t.strip() for t in texts]
if args.nb_images_for_fid:
random.shuffle(texts)
texts = texts[0:args.nb_images_for_fid]
print("Text size:", len(texts))
i = 0
if args.compute_fid:
dims = 2048
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
inceptionv3 = InceptionV3([block_idx]).to(device)
if args.compute_clip_score:
CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
clip_model, preprocess = clip.load(args.clip_model, device)
clip_mean = torch.Tensor(CLIP_MEAN).view(1,-1,1,1).to(device)
clip_std = torch.Tensor(CLIP_STD).view(1,-1,1,1).to(device)
if args.compute_fid:
if not args.real_img_dir.endswith("npz"):
real_mu, real_sigma = compute_statistics_of_path(
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
resize=args.image_size,
)
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
else:
stats = np.load(args.real_img_dir)
real_mu = stats['mu']
real_sigma = stats['sigma']
fake_features = []
if args.compute_clip_score:
clip_scores = []
if args.compute_image_reward:
image_rewards = []
for b in range(0, len(texts), args.batch_size):
text = texts[b:b+args.batch_size]
with torch.no_grad():
cond = netG.text_encoder(text)
bs = len(text)
t0 = time.time()
x_t_1 = torch.randn(bs, cfg['num_channels'], cfg['image_size'], cfg['image_size']).to(device)
if args.guidance_scale:
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
else:
fake_sample = sample(generator=netG, x_init=x_t_1, cond=cond)
fake_sample = to_range_0_1(fake_sample)
if args.compute_fid:
with torch.no_grad():
pred = inceptionv3(fake_sample)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
fake_features.append(pred)
if args.compute_clip_score:
with torch.no_grad():
clip_ims = torch.nn.functional.interpolate(fake_sample, (224, 224), mode="bicubic")
clip_ims = (clip_ims - clip_mean) / clip_std
clip_txt = clip.tokenize(text, truncate=True).to(device)
imf = clip_model.encode_image(clip_ims)
txtf = clip_model.encode_text(clip_txt)
imf = torch.nn.functional.normalize(imf, dim=1)
txtf = torch.nn.functional.normalize(txtf, dim=1)
clip_scores.append(((imf * txtf).sum(dim=1)).cpu())
if args.compute_image_reward:
for k, img in enumerate(fake_sample):
img = img.cpu().numpy().transpose(1,2,0)
img = img * 255
img = img.astype(np.uint8)
text_k = text[k]
score = image_reward.score(text_k, img)
image_rewards.append(score)
if i % 10 == 0:
print('evaluating batch ', i, time.time() - t0)
#break
i += 1
results = {}
if args.compute_fid:
fake_features = np.concatenate(fake_features)
fake_mu = np.mean(fake_features, axis=0)
fake_sigma = np.cov(fake_features, rowvar=False)
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
results['fid'] = fid
if args.compute_clip_score:
clip_score = torch.cat(clip_scores).mean().item()
results['clip_score'] = clip_score
if args.compute_image_reward:
reward = np.mean(image_rewards)
results['image_reward'] = reward
results.update(vars(args))
with open(dest, "w") as fd:
json.dump(results, fd)
print(results)
else:
# just generate some samples
if args.cond_text.endswith(".txt"):
texts = open(args.cond_text).readlines()
texts = [t.strip() for t in texts]
else:
texts = [args.cond_text] * args.batch_size
clip_guidance = False
if clip_guidance:
cond = text_encoder(texts, return_only_pooled=False)
clip_image_model = CLIPImageEncoder().to(device)
x_t_1 = torch.randn(len(texts), args.num_channels,args.image_size*args.scale_factor_h, args.image_size*args.scale_factor_w).to(device)
fake_sample = sample_from_model_clip_guidance(pos_coeff, netG, clip_image_model, args.num_timesteps, x_t_1,T, args, texts, cond=cond, guidance_scale=args.guidance_scale)
fake_sample = to_range_0_1(fake_sample)
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
else:
cond = netG.text_encoder(texts)
x_t_1 = torch.randn(len(texts), cfg['num_channels'], cfg['image_size'] * args.scale_factor_h, cfg['image_size'] * args.scale_factor_w).to(device)
t0 = time.time()
if args.guidance_scale:
if args.scale_factor_h > 1 or args.scale_factor_w > 1:
if args.scale_method == "convolutional":
split_input_params = {
"ks": (cfg['image_size'], cfg['image_size']),
"stride": (150, 150),
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"tie_braker": True,
'vqf': 1,
}
fake_sample = sample_from_model_classifier_free_guidance_convolutional(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale, split_input_params=split_input_params)
elif args.scale_method == "larger_input":
netG.attn_resolutions = [r * args.scale_factor_w for r in netG.attn_resolutions]
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
else:
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
else:
fake_sample = sample(generator=netG, x_init=x_t_1, cond=cond)
print(time.time() - t0)
fake_sample = to_range_0_1(fake_sample)
torchvision.utils.save_image(fake_sample, 'samples.jpg')
if __name__ == '__main__':
parser = argparse.ArgumentParser('ddgan parameters')
parser.add_argument('--name', type=str, default="", help="model config name")
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--seed', type=int, default=1024, help='seed used for initialization')
# by default, we just generate samples and save them to samples.jpg
# for evaluation, one or several of the following should be set to True
parser.add_argument('--compute-fid', action='store_true', default=False,
help='whether or not compute FID')
parser.add_argument('--compute-clip-score', action='store_true', default=False,
help='whether or not compute CLIP score')
parser.add_argument('--compute-image-reward', action='store_true', default=False,
help='whether or not compute CLIP score')
# clip model for clip evaluation
parser.add_argument('--clip-model', type=str,default="ViT-L/14")
# nb images to use for FID evaluation
parser.add_argument('--nb-images-for-fid', type=int, default=0)
# eval name to use when saving the evaluation results
parser.add_argument('--eval-name', type=str,default="")
# epoch to use for evaluation, if -1, iterate over all epochs (for evaluation)
parser.add_argument('--epoch-id', type=int,default=-1)
parser.add_argument('--guidance-scale', type=float,default=0)
parser.add_argument('--dynamic-thresholding-quantile', type=float,default=0)
# either a text, or a .txt file, where each line is a prompt
parser.add_argument('--scale-factor-h', type=int,default=1)
parser.add_argument('--scale-factor-w', type=int,default=1)
parser.add_argument('--scale-method', type=str,default="convolutional")
parser.add_argument('--cond-text', type=str,default="a chair in the form of an avocado")
args = parser.parse_args()
sample_and_test(args)
|