menevsem commited on
Commit
ca4fd2e
1 Parent(s): 7ff2bfc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -7,22 +7,32 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
 
 
 
 
 
 
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
 
26
  return outputs["text"]
27
 
28
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+ language = "it" # italian
11
 
12
  # load speech translation checkpoint
13
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
+ # model_tts_name = "microsoft/speecht5_tts"
16
+ # model_vocoder = "microsoft/speecht5_hifigan"
17
+ # model_embedding = "Matthijs/cmu-arctic-xvectors"
18
+ model_tts_name = "menevsem/speecht5_finetuned_voxpopuli_it"
19
+ model_vocoder = "microsoft/speecht5_hifigan"
20
+ model_embedding = "Matthijs/cmu-arctic-xvectors"
21
+
22
  # load text-to-speech checkpoint and speaker embeddings
23
+ processor = SpeechT5Processor.from_pretrained(model_tts_name)
24
 
25
+ model = SpeechT5ForTextToSpeech.from_pretrained(model_tts_name).to(device)
26
+ vocoder = SpeechT5HifiGan.from_pretrained(model_vocoder).to(device)
27
 
28
+ embeddings_dataset = load_dataset(model_embedding, split="validation")
29
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
30
 
31
 
32
  def translate(audio):
33
+ # generate_kwargs = {"task":"translate"}
34
+ generate_kwargs = {"task": "transcribe", "language": language}
35
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs=generate_kwargs)
36
  return outputs["text"]
37
 
38