Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,22 +7,32 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained(
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained(
|
19 |
|
20 |
-
embeddings_dataset = load_dataset(
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
|
|
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
language = "it" # italian
|
11 |
|
12 |
# load speech translation checkpoint
|
13 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
|
15 |
+
# model_tts_name = "microsoft/speecht5_tts"
|
16 |
+
# model_vocoder = "microsoft/speecht5_hifigan"
|
17 |
+
# model_embedding = "Matthijs/cmu-arctic-xvectors"
|
18 |
+
model_tts_name = "menevsem/speecht5_finetuned_voxpopuli_it"
|
19 |
+
model_vocoder = "microsoft/speecht5_hifigan"
|
20 |
+
model_embedding = "Matthijs/cmu-arctic-xvectors"
|
21 |
+
|
22 |
# load text-to-speech checkpoint and speaker embeddings
|
23 |
+
processor = SpeechT5Processor.from_pretrained(model_tts_name)
|
24 |
|
25 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_tts_name).to(device)
|
26 |
+
vocoder = SpeechT5HifiGan.from_pretrained(model_vocoder).to(device)
|
27 |
|
28 |
+
embeddings_dataset = load_dataset(model_embedding, split="validation")
|
29 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
30 |
|
31 |
|
32 |
def translate(audio):
|
33 |
+
# generate_kwargs = {"task":"translate"}
|
34 |
+
generate_kwargs = {"task": "transcribe", "language": language}
|
35 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs=generate_kwargs)
|
36 |
return outputs["text"]
|
37 |
|
38 |
|