File size: 8,586 Bytes
b3640b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import torch.nn.functional as F
from torch import nn
import copy, math
from models.position_encoding import build_position_encoding


class TransformerEncoder(nn.Module):

    def __init__(self, enc_layer, num_layers, use_dense_pos=False):
        super().__init__()
        self.layers = nn.ModuleList([copy.deepcopy(enc_layer) for i in range(num_layers)])
        self.num_layers = num_layers
        self.use_dense_pos = use_dense_pos

    def forward(self, src, pos, padding_mask=None):
        if self.use_dense_pos:
            ## pos encoding at each MH-Attention block (q,k)
            output, pos_enc = src, pos
            for layer in self.layers:
                output, att_map = layer(output, pos_enc, padding_mask)
        else:
            ## pos encoding at input only (q,k,v)
            output, pos_enc = src + pos, None
            for layer in self.layers:
                output, att_map = layer(output, pos_enc, padding_mask)
        return output, att_map


class EncoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
                use_dense_pos=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward(self, src, pos, padding_mask):
        q = k = self.with_pos_embed(src, pos)
        src2, attn = self.self_attn(q, k, value=src, key_padding_mask=padding_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src, attn


class TransformerDecoder(nn.Module):

    def __init__(self, dec_layer, num_layers, use_dense_pos=False, return_intermediate=False):
        super().__init__()
        self.layers = nn.ModuleList([copy.deepcopy(dec_layer) for i in range(num_layers)])
        self.num_layers = num_layers
        self.use_dense_pos = use_dense_pos
        self.return_intermediate = return_intermediate

    def forward(self, tgt, tgt_pos, memory, memory_pos, 
                tgt_padding_mask, src_padding_mask, tgt_attn_mask=None):
        intermediate = []
        if self.use_dense_pos:
            ## pos encoding at each MH-Attention block (q,k)
            output = tgt
            tgt_pos_enc, memory_pos_enc = tgt_pos, memory_pos
            for layer in self.layers:
                output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc, 
                                tgt_padding_mask, src_padding_mask, tgt_attn_mask)
                if self.return_intermediate:
                    intermediate.append(output)
        else:
            ## pos encoding at input only (q,k,v)
            output = tgt + tgt_pos
            tgt_pos_enc, memory_pos_enc = None, None
            for layer in self.layers:
                output, att_map = layer(output, tgt_pos_enc, memory, memory_pos_enc, 
                                tgt_padding_mask, src_padding_mask, tgt_attn_mask)
                if self.return_intermediate:
                    intermediate.append(output)

        if self.return_intermediate:
            return torch.stack(intermediate)
        return output, att_map


class DecoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
                 use_dense_pos=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.corr_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward(self, tgt, tgt_pos, memory, memory_pos, 
                tgt_padding_mask, memory_padding_mask, tgt_attn_mask):
        q = k = self.with_pos_embed(tgt, tgt_pos)
        tgt2, attn = self.self_attn(q, k, value=tgt, key_padding_mask=tgt_padding_mask,
                                    attn_mask=tgt_attn_mask)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2, attn = self.corr_attn(query=self.with_pos_embed(tgt, tgt_pos),
                                    key=self.with_pos_embed(memory, memory_pos),
                                    value=memory, key_padding_mask=memory_padding_mask)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt, attn


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")



#-----------------------------------------------------------------------------------
'''
copy from the implementatoin of "attention-is-all-you-need-pytorch-master" by Yu-Hsiang Huang
'''

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn



class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):

        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn