Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from models.network import HourGlass2, SpixelNet, ColorProbNet | |
from models.transformer2d import EncoderLayer, DecoderLayer, TransformerEncoder, TransformerDecoder | |
from models.position_encoding import build_position_encoding | |
from models import basic, clusterkit, anchor_gen | |
from collections import OrderedDict | |
from utils import util, cielab | |
class SpixelSeg(nn.Module): | |
def __init__(self, inChannel=1, outChannel=9, batchNorm=True): | |
super(SpixelSeg, self).__init__() | |
self.net = SpixelNet(inChannel=inChannel, outChannel=outChannel, batchNorm=batchNorm) | |
def get_trainable_params(self, lr=1.0): | |
#print('=> [optimizer] finetune backbone with smaller lr') | |
params = [] | |
for name, param in self.named_parameters(): | |
if 'xxx' in name: | |
params.append({'params': param, 'lr': lr}) | |
else: | |
params.append({'params': param}) | |
return params | |
def forward(self, input_grays): | |
pred_probs = self.net(input_grays) | |
return pred_probs | |
class AnchorColorProb(nn.Module): | |
def __init__(self, inChannel=1, outChannel=313, sp_size=16, d_model=64, use_dense_pos=True, spix_pos=False, learning_pos=False, \ | |
random_hint=False, hint2regress=False, enhanced=False, use_mask=False, rank=0, colorLabeler=None): | |
super(AnchorColorProb, self).__init__() | |
self.sp_size = sp_size | |
self.spix_pos = spix_pos | |
self.use_token_mask = use_mask | |
self.hint2regress = hint2regress | |
self.segnet = SpixelSeg(inChannel=1, outChannel=9, batchNorm=True) | |
self.repnet = ColorProbNet(inChannel=inChannel, outChannel=64) | |
self.enhanced = enhanced | |
if self.enhanced: | |
self.enhanceNet = HourGlass2(inChannel=64+1, outChannel=2, resNum=3, normLayer=nn.BatchNorm2d) | |
## transformer architecture | |
self.n_vocab = 313 | |
d_model, dim_feedforward, nhead = d_model, 4*d_model, 8 | |
dropout, activation = 0.1, "relu" | |
n_enc_layers, n_dec_layers = 6, 6 | |
enc_layer = EncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, use_dense_pos) | |
self.wildpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos) | |
self.hintpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos) | |
if self.spix_pos: | |
n_pos_x, n_pos_y = 256, 256 | |
else: | |
n_pos_x, n_pos_y = 256//sp_size, 16//sp_size | |
self.pos_enc = build_position_encoding(d_model//2, n_pos_x, n_pos_y, is_learned=False) | |
self.mid_word_prj = nn.Linear(d_model, self.n_vocab, bias=False) | |
if self.hint2regress: | |
self.trg_word_emb = nn.Linear(d_model+2+1, d_model, bias=False) | |
self.trg_word_prj = nn.Linear(d_model, 2, bias=False) | |
else: | |
self.trg_word_emb = nn.Linear(d_model+self.n_vocab+1, d_model, bias=False) | |
self.trg_word_prj = nn.Linear(d_model, self.n_vocab, bias=False) | |
self.colorLabeler = colorLabeler | |
anchor_mode = 'random' if random_hint else 'clustering' | |
self.anchorGen = anchor_gen.AnchorAnalysis(mode=anchor_mode, colorLabeler=self.colorLabeler) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def load_and_froze_weight(self, checkpt_path): | |
data_dict = torch.load(checkpt_path, map_location=torch.device('cpu')) | |
''' | |
for param_tensor in data_dict['state_dict']: | |
print(param_tensor,'\t',data_dict['state_dict'][param_tensor].size()) | |
''' | |
self.segnet.load_state_dict(data_dict['state_dict']) | |
for name, param in self.segnet.named_parameters(): | |
param.requires_grad = False | |
self.segnet.eval() | |
def set_train(self): | |
## running mode only affect certain modules, e.g. Dropout, BN, etc. | |
self.repnet.train() | |
self.wildpath.train() | |
self.hintpath.train() | |
if self.enhanced: | |
self.enhanceNet.train() | |
def get_entry_mask(self, mask_tensor): | |
if mask_tensor is None: | |
return None | |
## flatten (N,1,H,W) to (N,HW) | |
return mask_tensor.flatten(1) | |
def forward(self, input_grays, input_colors, n_anchors=8, sampled_T=0): | |
''' | |
Notice: function was customized for inferece only | |
''' | |
affinity_map = self.segnet(input_grays) | |
pred_feats = self.repnet(input_grays) | |
if self.spix_pos: | |
full_pos_feats = self.pos_enc(pred_feats) | |
proxy_feats = torch.cat([pred_feats, input_colors, full_pos_feats], dim=1) | |
pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True) | |
feat_tokens = pooled_proxy_feats[:,:64,:,:] | |
spix_colors = pooled_proxy_feats[:,64:66,:,:] | |
pos_feats = pooled_proxy_feats[:,66:,:,:] | |
else: | |
proxy_feats = torch.cat([pred_feats, input_colors], dim=1) | |
pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True) | |
feat_tokens = pooled_proxy_feats[:,:64,:,:] | |
spix_colors = pooled_proxy_feats[:,64:,:,:] | |
pos_feats = self.pos_enc(feat_tokens) | |
token_labels = torch.max(self.colorLabeler.encode_ab2ind(spix_colors), dim=1, keepdim=True)[1] | |
spixel_sizes = basic.get_spixel_size(affinity_map, self.sp_size, self.sp_size) | |
all_one_map = torch.ones(spixel_sizes.shape, device=input_grays.device) | |
empty_entries = torch.where(spixel_sizes < 25/(self.sp_size**2), all_one_map, 1-all_one_map) | |
src_pad_mask = self.get_entry_mask(empty_entries) if self.use_token_mask else None | |
trg_pad_mask = src_pad_mask | |
## parallel prob | |
N,C,H,W = feat_tokens.shape | |
## (N,C,H,W) -> (HW,N,C) | |
src_pos_seq = pos_feats.flatten(2).permute(2, 0, 1) | |
src_seq = feat_tokens.flatten(2).permute(2, 0, 1) | |
## color prob branch | |
enc_out, _ = self.wildpath(src_seq, src_pos_seq, src_pad_mask) | |
pal_logit = self.mid_word_prj(enc_out) | |
pal_logit = pal_logit.permute(1, 2, 0).view(N,self.n_vocab,H,W) | |
## seed prob branch | |
## mask(N,1,H,W): sample anchors at clustering layers | |
color_feat = enc_out.permute(1, 2, 0).view(N,C,H,W) | |
hint_mask, cluster_mask = self.anchorGen(color_feat, n_anchors, spixel_sizes, use_sklearn_kmeans=False) | |
pred_prob = torch.softmax(pal_logit, dim=1) | |
color_feat2 = src_seq.permute(1, 2, 0).view(N,C,H,W) | |
#pred_prob, adj_matrix = self.anchorGen._detect_correlation(color_feat, pred_prob, hint_mask, thres=0.1) | |
if sampled_T < 0: | |
## GT anchor colors | |
sampled_spix_colors = spix_colors | |
elif sampled_T > 0: | |
top1_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=0) | |
top2_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=1) | |
top3_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=2) | |
## duplicate meta tensors | |
sampled_spix_colors = torch.cat((top1_spix_colors,top2_spix_colors,top3_spix_colors), dim=0) | |
N = 3*N | |
input_grays = input_grays.expand(N,-1,-1,-1) | |
hint_mask = hint_mask.expand(N,-1,-1,-1) | |
affinity_map = affinity_map.expand(N,-1,-1,-1) | |
src_seq = src_seq.expand(-1, N,-1) | |
src_pos_seq = src_pos_seq.expand(-1, N,-1) | |
else: | |
sampled_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=sampled_T) | |
## debug: controllable | |
if False: | |
hint_mask, sampled_spix_colors = basic.io_user_control(hint_mask, spix_colors, output=False) | |
sampled_token_labels = torch.max(self.colorLabeler.encode_ab2ind(sampled_spix_colors), dim=1, keepdim=True)[1] | |
## hint based prediction | |
## (N,C,H,W) -> (HW,N,C) | |
mask_seq = hint_mask.flatten(2).permute(2, 0, 1) | |
if self.hint2regress: | |
spix_colors_ = sampled_spix_colors | |
gt_seq = spix_colors_.flatten(2).permute(2, 0, 1) | |
hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * gt_seq, mask_seq], dim=2)) | |
dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask) | |
else: | |
token_labels_ = sampled_token_labels | |
label_map = F.one_hot(token_labels_, num_classes=313).squeeze(1).float() | |
label_seq = label_map.permute(0, 3, 1, 2).flatten(2).permute(2, 0, 1) | |
hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * label_seq, mask_seq], dim=2)) | |
dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask) | |
ref_logit = self.trg_word_prj(dec_out) | |
Ct = 2 if self.hint2regress else self.n_vocab | |
ref_logit = ref_logit.permute(1, 2, 0).view(N,Ct,H,W) | |
## pixelwise enhancement | |
pred_colors = None | |
if self.enhanced: | |
proc_feats = dec_out.permute(1, 2, 0).view(N,64,H,W) | |
full_feats = basic.upfeat(proc_feats, affinity_map, self.sp_size, self.sp_size) | |
pred_colors = self.enhanceNet(torch.cat((input_grays,full_feats), dim=1)) | |
pred_colors = torch.tanh(pred_colors) | |
return pal_logit, ref_logit, pred_colors, affinity_map, spix_colors, hint_mask |