Spaces:
Runtime error
Runtime error
from __future__ import print_function, division | |
import torch, os, glob | |
from torch.utils.data import Dataset, DataLoader | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
class LabDataset(Dataset): | |
def __init__(self, rootdir=None, filelist=None, resize=None): | |
if filelist: | |
self.file_list = filelist | |
else: | |
assert os.path.exists(rootdir), "@dir:'%s' NOT exist ..."%rootdir | |
self.file_list = glob.glob(os.path.join(rootdir, '*.*')) | |
self.file_list.sort() | |
self.resize = resize | |
def __len__(self): | |
return len(self.file_list) | |
def __getitem__(self, idx): | |
bgr_img = cv2.imread(self.file_list[idx], cv2.IMREAD_COLOR) | |
if self.resize: | |
bgr_img = cv2.resize(bgr_img, (self.resize,self.resize), interpolation=cv2.INTER_CUBIC) | |
bgr_img = np.array(bgr_img / 255., np.float32) | |
lab_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2LAB) | |
#print('--------L:', np.min(lab_img[:,:,0]), np.max(lab_img[:,:,0])) | |
#print('--------ab:', np.min(lab_img[:,:,1:3]), np.max(lab_img[:,:,1:3])) | |
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1))) | |
bgr_img = torch.from_numpy(bgr_img.transpose((2, 0, 1))) | |
gray_img = (lab_img[0:1,:,:]-50.) / 50. | |
color_map = lab_img[1:3,:,:] / 110. | |
bgr_img = bgr_img*2. - 1. | |
return {'gray': gray_img, 'color': color_map, 'BGR': bgr_img} |