import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import torchvision import torch.nn.utils.spectral_norm as spectral_norm import math class ConvBlock(nn.Module): def __init__(self, inChannels, outChannels, convNum, normLayer=None): super(ConvBlock, self).__init__() self.inConv = nn.Sequential( nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) layers = [] for _ in range(convNum - 1): layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) layers.append(nn.ReLU(inplace=True)) if not (normLayer is None): layers.append(normLayer(outChannels)) self.conv = nn.Sequential(*layers) def forward(self, x): x = self.inConv(x) x = self.conv(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, normLayer=None): super(ResidualBlock, self).__init__() layers = [] layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1)) layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) if not (normLayer is None): layers.append(normLayer(channels)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1)) if not (normLayer is None): layers.append(normLayer(channels)) self.conv = nn.Sequential(*layers) def forward(self, x): residual = self.conv(x) return F.relu(x + residual, inplace=True) class ResidualBlockSN(nn.Module): def __init__(self, channels, normLayer=None): super(ResidualBlockSN, self).__init__() layers = [] layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) layers.append(nn.LeakyReLU(0.2, True)) layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1))) if not (normLayer is None): layers.append(normLayer(channels)) self.conv = nn.Sequential(*layers) def forward(self, x): residual = self.conv(x) return F.leaky_relu(x + residual, 2e-1, inplace=True) class DownsampleBlock(nn.Module): def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): super(DownsampleBlock, self).__init__() layers = [] layers.append(nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=2)) layers.append(nn.ReLU(inplace=True)) for _ in range(convNum - 1): layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) layers.append(nn.ReLU(inplace=True)) if not (normLayer is None): layers.append(normLayer(outChannels)) self.conv = nn.Sequential(*layers) def forward(self, x): return self.conv(x) class UpsampleBlock(nn.Module): def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): super(UpsampleBlock, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=1) self.combine = nn.Conv2d(2 * outChannels, outChannels, kernel_size=3, padding=1) layers = [] for _ in range(convNum - 1): layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)) layers.append(nn.ReLU(inplace=True)) if not (normLayer is None): layers.append(normLayer(outChannels)) self.conv2 = nn.Sequential(*layers) def forward(self, x, x0): x = self.conv1(x) x = F.interpolate(x, scale_factor=2, mode='nearest') x = self.combine(torch.cat((x, x0), 1)) x = F.relu(x) return self.conv2(x) class UpsampleBlockSN(nn.Module): def __init__(self, inChannels, outChannels, convNum=2, normLayer=None): super(UpsampleBlockSN, self).__init__() self.conv1 = spectral_norm(nn.Conv2d(inChannels, outChannels, kernel_size=3, stride=1, padding=1)) self.shortcut = spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, stride=1, padding=1)) layers = [] for _ in range(convNum - 1): layers.append(spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))) layers.append(nn.LeakyReLU(0.2, True)) if not (normLayer is None): layers.append(normLayer(outChannels)) self.conv2 = nn.Sequential(*layers) def forward(self, x, x0): x = self.conv1(x) x = F.interpolate(x, scale_factor=2, mode='nearest') x = x + self.shortcut(x0) x = F.leaky_relu(x, 2e-1) return self.conv2(x) class HourGlass2(nn.Module): def __init__(self, inChannel=3, outChannel=1, resNum=3, normLayer=None): super(HourGlass2, self).__init__() self.inConv = ConvBlock(inChannel, 64, convNum=2, normLayer=normLayer) self.down1 = DownsampleBlock(64, 128, convNum=2, normLayer=normLayer) self.down2 = DownsampleBlock(128, 256, convNum=2, normLayer=normLayer) self.residual = nn.Sequential(*[ResidualBlock(256) for _ in range(resNum)]) self.up2 = UpsampleBlock(256, 128, convNum=3, normLayer=normLayer) self.up1 = UpsampleBlock(128, 64, convNum=3, normLayer=normLayer) self.outConv = nn.Conv2d(64, outChannel, kernel_size=3, padding=1) def forward(self, x): f1 = self.inConv(x) f2 = self.down1(f1) f3 = self.down2(f2) r3 = self.residual(f3) r2 = self.up2(r3, f2) r1 = self.up1(r2, f1) y = self.outConv(r1) return y class ColorProbNet(nn.Module): def __init__(self, inChannel=1, outChannel=2, with_SA=False): super(ColorProbNet, self).__init__() BNFunc = nn.BatchNorm2d # conv1: 256 conv1_2 = [spectral_norm(nn.Conv2d(inChannel, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv1_2 += [spectral_norm(nn.Conv2d(64, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv1_2 += [BNFunc(64, affine=True)] # conv2: 128 conv2_3 = [spectral_norm(nn.Conv2d(64, 128, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv2_3 += [BNFunc(128, affine=True)] # conv3: 64 conv3_3 = [spectral_norm(nn.Conv2d(128, 256, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv3_3 += [BNFunc(256, affine=True)] # conv4: 32 conv4_3 = [spectral_norm(nn.Conv2d(256, 512, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),] conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv4_3 += [BNFunc(512, affine=True)] # conv5: 32 conv5_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv5_3 += [BNFunc(512, affine=True)] # conv6: 32 conv6_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv6_3 += [BNFunc(512, affine=True),] if with_SA: conv6_3 += [Self_Attn(512)] # conv7: 32 conv7_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),] conv7_3 += [BNFunc(512, affine=True)] # conv8: 64 conv8up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(512, 256, 3, stride=1, padding=1),] conv3short8 = [nn.Conv2d(256, 256, 3, stride=1, padding=1),] conv8_3 = [nn.ReLU(True),] conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),] conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),] conv8_3 += [BNFunc(256, affine=True),] # conv9: 128 conv9up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(256, 128, 3, stride=1, padding=1),] conv9_2 = [nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(True),] conv9_2 += [BNFunc(128, affine=True)] # conv10: 64 conv10up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(128, 64, 3, stride=1, padding=1),] conv10_2 = [nn.ReLU(True),] conv10_2 += [nn.Conv2d(64, outChannel, 3, stride=1, padding=1), nn.ReLU(True),] self.conv1_2 = nn.Sequential(*conv1_2) self.conv2_3 = nn.Sequential(*conv2_3) self.conv3_3 = nn.Sequential(*conv3_3) self.conv4_3 = nn.Sequential(*conv4_3) self.conv5_3 = nn.Sequential(*conv5_3) self.conv6_3 = nn.Sequential(*conv6_3) self.conv7_3 = nn.Sequential(*conv7_3) self.conv8up = nn.Sequential(*conv8up) self.conv3short8 = nn.Sequential(*conv3short8) self.conv8_3 = nn.Sequential(*conv8_3) self.conv9up = nn.Sequential(*conv9up) self.conv9_2 = nn.Sequential(*conv9_2) self.conv10up = nn.Sequential(*conv10up) self.conv10_2 = nn.Sequential(*conv10_2) # claffificaton output #self.model_class = nn.Sequential(*[nn.Conv2d(256, 313, kernel_size=1, padding=0, stride=1),]) def forward(self, input_grays): f1_2 = self.conv1_2(input_grays) f2_3 = self.conv2_3(f1_2) f3_3 = self.conv3_3(f2_3) f4_3 = self.conv4_3(f3_3) f5_3 = self.conv5_3(f4_3) f6_3 = self.conv6_3(f5_3) f7_3 = self.conv7_3(f6_3) f8_up = self.conv8up(f7_3) + self.conv3short8(f3_3) f8_3 = self.conv8_3(f8_up) f9_up = self.conv9up(f8_3) f9_2 = self.conv9_2(f9_up) f10_up = self.conv10up(f9_2) f10_2 = self.conv10_2(f10_up) out_feats = f10_2 #out_probs = self.model_class(f8_3) return out_feats def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1): if batchNorm: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=False), nn.BatchNorm2d(out_planes), nn.LeakyReLU(0.1) ) else: return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True), nn.LeakyReLU(0.1) ) def deconv(in_planes, out_planes): return nn.Sequential( nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True), nn.LeakyReLU(0.1) ) class SpixelNet(nn.Module): def __init__(self, inChannel=3, outChannel=9, batchNorm=True): super(SpixelNet,self).__init__() self.batchNorm = batchNorm self.conv0a = conv(self.batchNorm, inChannel, 16, kernel_size=3) self.conv0b = conv(self.batchNorm, 16, 16, kernel_size=3) self.conv1a = conv(self.batchNorm, 16, 32, kernel_size=3, stride=2) self.conv1b = conv(self.batchNorm, 32, 32, kernel_size=3) self.conv2a = conv(self.batchNorm, 32, 64, kernel_size=3, stride=2) self.conv2b = conv(self.batchNorm, 64, 64, kernel_size=3) self.conv3a = conv(self.batchNorm, 64, 128, kernel_size=3, stride=2) self.conv3b = conv(self.batchNorm, 128, 128, kernel_size=3) self.conv4a = conv(self.batchNorm, 128, 256, kernel_size=3, stride=2) self.conv4b = conv(self.batchNorm, 256, 256, kernel_size=3) self.deconv3 = deconv(256, 128) self.conv3_1 = conv(self.batchNorm, 256, 128) self.deconv2 = deconv(128, 64) self.conv2_1 = conv(self.batchNorm, 128, 64) self.deconv1 = deconv(64, 32) self.conv1_1 = conv(self.batchNorm, 64, 32) self.deconv0 = deconv(32, 16) self.conv0_1 = conv(self.batchNorm, 32, 16) self.pred_mask0 = nn.Conv2d(16, outChannel, kernel_size=3, stride=1, padding=1, bias=True) self.softmax = nn.Softmax(1) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): init.kaiming_normal_(m.weight, 0.1) if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) def forward(self, x): out1 = self.conv0b(self.conv0a(x)) #5*5 out2 = self.conv1b(self.conv1a(out1)) #11*11 out3 = self.conv2b(self.conv2a(out2)) #23*23 out4 = self.conv3b(self.conv3a(out3)) #47*47 out5 = self.conv4b(self.conv4a(out4)) #95*95 out_deconv3 = self.deconv3(out5) concat3 = torch.cat((out4, out_deconv3), 1) out_conv3_1 = self.conv3_1(concat3) out_deconv2 = self.deconv2(out_conv3_1) concat2 = torch.cat((out3, out_deconv2), 1) out_conv2_1 = self.conv2_1(concat2) out_deconv1 = self.deconv1(out_conv2_1) concat1 = torch.cat((out2, out_deconv1), 1) out_conv1_1 = self.conv1_1(concat1) out_deconv0 = self.deconv0(out_conv1_1) concat0 = torch.cat((out1, out_deconv0), 1) out_conv0_1 = self.conv0_1(concat0) mask0 = self.pred_mask0(out_conv0_1) prob0 = self.softmax(mask0) return prob0 ## VGG architecter, used for the perceptual loss using a pretrained VGG network class VGG19(torch.nn.Module): def __init__(self, requires_grad=False, local_pretrained_path='checkpoints/vgg19.pth'): super().__init__() #vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features model = torchvision.models.vgg19() model.load_state_dict(torch.load(local_pretrained_path)) vgg_pretrained_features = model.features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out