import os, glob, sys, logging import argparse, datetime, time import numpy as np import cv2 from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F from models import model, basic from utils import util def setup_model(checkpt_path, device="cuda"): #print('--------------', torch.cuda.is_available()) """Load the model into memory to make running multiple predictions efficient""" colorLabeler = basic.ColorLabel(device=device) colorizer = model.AnchorColorProb(inChannel=1, outChannel=313, enhanced=True, colorLabeler=colorLabeler) colorizer = colorizer.to(device) #checkpt_path = "./checkpoints/disco-beta.pth.rar" assert os.path.exists(checkpt_path), "No checkpoint found!" data_dict = torch.load(checkpt_path, map_location=torch.device('cpu')) colorizer.load_state_dict(data_dict['state_dict']) colorizer.eval() return colorizer, colorLabeler def resize_ab2l(gray_img, lab_imgs, vis=False): H, W = gray_img.shape[:2] reszied_ab = cv2.resize(lab_imgs[:,:,1:], (W,H), interpolation=cv2.INTER_LINEAR) if vis: gray_img = cv2.resize(lab_imgs[:,:,:1], (W,H), interpolation=cv2.INTER_LINEAR) return np.concatenate((gray_img[:,:,np.newaxis], reszied_ab), axis=2) else: return np.concatenate((gray_img, reszied_ab), axis=2) def prepare_data(rgb_img, target_res): rgb_img = np.array(rgb_img / 255., np.float32) lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB) org_grays = (lab_img[:,:,[0]]-50.) / 50. lab_img = cv2.resize(lab_img, target_res, interpolation=cv2.INTER_LINEAR) lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1))) gray_img = (lab_img[0:1,:,:]-50.) / 50. ab_chans = lab_img[1:3,:,:] / 110. input_grays = gray_img.unsqueeze(0) input_colors = ab_chans.unsqueeze(0) return input_grays, input_colors, org_grays def colorize_grayscale(colorizer, color_class, rgb_img, hint_img, n_anchors, is_high_res, is_editable, device="cuda"): n_anchors = int(n_anchors) n_anchors = max(n_anchors, 3) n_anchors = min(n_anchors, 14) target_res = (512,512) if is_high_res else (256,256) input_grays, input_colors, org_grays = prepare_data(rgb_img, target_res) input_grays = input_grays.to(device) input_colors = input_colors.to(device) if is_editable: print('>>>:editable mode') sampled_T = -1 _, input_colors, _ = prepare_data(hint_img, target_res) input_colors = input_colors.to(device) pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \ input_colors, n_anchors, sampled_T) else: print('>>>:automatic mode') sampled_T = 0 pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \ input_colors, n_anchors, sampled_T) pred_labs = torch.cat((input_grays,enhanced_ab), dim=1) lab_imgs = basic.tensor2array(pred_labs).squeeze(axis=0) lab_imgs = resize_ab2l(org_grays, lab_imgs) lab_imgs[:,:,0] = lab_imgs[:,:,0] * 50.0 + 50.0 lab_imgs[:,:,1:3] = lab_imgs[:,:,1:3] * 110.0 rgb_output = cv2.cvtColor(lab_imgs[:,:,:], cv2.COLOR_LAB2RGB) return (rgb_output*255.0).astype(np.uint8) def predict_anchors(colorizer, color_class, rgb_img, n_anchors, is_high_res, is_editable, device="cuda"): n_anchors = int(n_anchors) n_anchors = max(n_anchors, 3) n_anchors = min(n_anchors, 14) target_res = (512,512) if is_high_res else (256,256) input_grays, input_colors, org_grays = prepare_data(rgb_img, target_res) input_grays = input_grays.to(device) input_colors = input_colors.to(device) sampled_T, sp_size = 0, 16 pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \ input_colors, n_anchors, sampled_T) pred_probs = pal_logit guided_colors = color_class.decode_ind2ab(ref_logit, T=0) guided_colors = basic.upfeat(guided_colors, affinity_map, sp_size, sp_size) anchor_masks = basic.upfeat(hint_mask, affinity_map, sp_size, sp_size) marked_labs = basic.mark_color_hints(input_grays, guided_colors, anchor_masks, base_ABs=None) lab_imgs = basic.tensor2array(marked_labs).squeeze(axis=0) lab_imgs = resize_ab2l(org_grays, lab_imgs, vis=True) lab_imgs[:,:,0] = lab_imgs[:,:,0] * 50.0 + 50.0 lab_imgs[:,:,1:3] = lab_imgs[:,:,1:3] * 110.0 rgb_output = cv2.cvtColor(lab_imgs[:,:,:], cv2.COLOR_LAB2RGB) return (rgb_output*255.0).astype(np.uint8)