Spaces:
Runtime error
Runtime error
File size: 8,382 Bytes
a5b48a7 ade1d2c a5b48a7 0b9c45d a5b48a7 c003b8d a5b48a7 5b3f957 a5b48a7 1823a15 a5b48a7 7d3d77d a272cb9 7d3d77d a272cb9 7d3d77d a272cb9 7d3d77d a272cb9 7d3d77d a272cb9 a5b48a7 5b3f957 5b6eec5 3c0c20b 0f925b8 3c0c20b 5b6eec5 7178e21 3c0c20b 7178e21 5a3a71e 7178e21 3b6bdd2 7178e21 5b6eec5 66afc6f 3421166 0b9c45d 3421166 cae39d8 3421166 3c0c20b a5b48a7 66afc6f 7d3d77d 5c13efa 0db6418 5c13efa 7d3d77d fa1169f 66afc6f 4c3c8bf 66afc6f fa1169f 1b8f04a 4c3c8bf fa1169f 1b8f04a 66afc6f 5b3f957 41b12a8 ffef722 5b3f957 0b25d1f 5b3f957 7d3d77d 360577c 6eb3c68 a2df623 5b3f957 6eb3c68 5b3f957 6eb3c68 25a4d3c 0b25d1f 5b3f957 cf47250 5b3f957 66afc6f 41b12a8 dad0315 0d45e75 dad0315 0d45e75 dad0315 0d45e75 dad0315 0b25d1f 0d45e75 5b3f957 0b25d1f f1d1dd8 1b8f04a f1d1dd8 1b8f04a f1d1dd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
import requests
import os
#
import json
import random
from elo import update_elo_ratings # Custom function for ELO ratings
enable_btn = gr.Button.update(interactive=True)
# Load chatbot URLs and model names from a JSON file
with open('chatbot_urls.json', 'r') as file:
chatbots = json.load(file)
def clear_chat(state):
if state is not None:
state = {}
return state, None,None,gr.Button.update(interactive=False),gr.Button.update(interactive=False)
from datasets import load_dataset
import requests
import os
def get_user_elo_ratings():
dataset = load_dataset("rwitz/mistral-elo-ratings", streaming=True)
elo_ratings = dataset['train'] # or the relevant split
return elo_ratings
def update_elo_rating(player_id, new_rating):
# Fetch the current dataset
elo_ratings = get_user_elo_ratings()
# Function to update the rating of a specific player
def update_rating(example):
return {'rating': new_rating}
# Update the dataset
updated_dataset = elo_ratings.map(update_rating)
# Convert updated dataset to a dictionary for pushing
updated_data = updated_dataset.to_dict()
# Push the updated dataset back to Hugging Face
response = requests.post(
"https://huggingface.co/datasets/rwitz/mistral-elo-ratings",
headers={"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_TOKEN')}"},
json=updated_data
)
if response.status_code == 200:
print("Successfully updated the dataset")
else:
print("Failed to update the dataset. Response code:", response.status_code)
# Function to get bot response
def format_alpaca_prompt(state):
alpaca_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
alpaca_prompt2 = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
for message in state["history"][0]:
j=""
if message['role']=='user':
j="### Instruction:\n"
else:
j="### Response:\n"
alpaca_prompt += j+ message['content']+"\n\n"
for message in state["history"][1]:
j=""
if message['role']=='user':
j="### Instruction:\n"
else:
j="### Response:\n"
alpaca_prompt2 += j+ message['content']+"\n\n"
return [alpaca_prompt+"### Response:\n",alpaca_prompt2+"### Response:\n"]
def get_bot_response(url, prompt,state,bot_index):
alpaca_prompt = format_alpaca_prompt(state)
payload = {
"input": {
"prompt": alpaca_prompt[bot_index],
"sampling_params": {
"max_new_tokens": 50,
"temperature": 0.7,
"top_p":0.95
}
}
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": os.environ.get("RUNPOD_TOKEN")
}
response = requests.post(url, json=payload, headers=headers)
return response.json()['output'].split('### Instruction')[0]
def chat_with_bots(user_input, state):
bot_names = list(chatbots.keys())
random.shuffle(bot_names)
bot1_url, bot2_url = chatbots[bot_names[0]], chatbots[bot_names[1]]
# Update the state with the names of the last bots
state.update({'last_bots': [bot_names[0], bot_names[1]]})
bot1_response = get_bot_response(bot1_url, user_input,state,0)
bot2_response = get_bot_response(bot2_url, user_input,state,1)
return bot1_response, bot2_response
def update_ratings(state, winner_index):
elo_ratings = get_user_elo_ratings()
bot_names = list(chatbots.keys())
winner = state['last_bots'][winner_index]
loser = state['last_bots'][1 - winner_index]
elo_ratings = update_elo_ratings(elo_ratings, winner, loser)
update_elo_rating(elo_ratings)
return [('Winner: ',state['last_bots'][winner_index]),('Loser: ',state['last_bots'][1 - winner_index])]
def vote_up_model(state, chatbot,chatbot2):
update_message = update_ratings(state, 0)
chatbot.append(update_message[0])
chatbot2.append(update_message[1])
return chatbot, chatbot2,gr.Button.update(interactive=False),gr.Button.update(interactive=False),gr.Textbox.update(interactive=False),gr.Button.update(interactive=False) # Disable voting buttons
def vote_down_model(state, chatbot,chatbot2):
update_message = update_ratings(state, 1)
chatbot2.append(update_message[0])
chatbot.append(update_message[1])
return chatbot,chatbot2, gr.Button.update(interactive=False),gr.Button.update(interactive=False),gr.Textbox.update(interactive=False),gr.Button.update(interactive=False) # Disable voting buttons
def user_ask(state, chatbot1, chatbot2, textbox):
global enable_btn
user_input = textbox
if len(user_input) > 200:
user_input = user_input[:200] # Limit user input to 200 characters
# Updating state with the current ELO ratings
state["elo_ratings"] = get_user_elo_ratings()
if "history" not in state:
state.update({'history': [[],[]]})
state["history"][0].extend([
{"role": "user", "content": user_input}])
state["history"][1].extend([
{"role": "user", "content": user_input}])
# Chat with bots
bot1_response, bot2_response = chat_with_bots(user_input, state)
state["history"][0].extend([
{"role": "bot1", "content": bot1_response},
])
state["history"][1].extend([
{"role": "bot2", "content": bot2_response},
])
chatbot1.append((user_input,bot1_response))
chatbot2.append((user_input,bot2_response))
# Keep only the last 10 messages in history
state["history"] = state["history"][-10:]
# Format the conversation in ChatML format
return state, chatbot1, chatbot2, textbox,enable_btn,enable_btn
import pandas as pd
# Function to generate leaderboard data
def generate_leaderboard():
elo_ratings_dataset = get_user_elo_ratings() # Returns a Hugging Face dataset
# Convert the Hugging Face dataset to a pandas DataFrame
leaderboard_data = pd.DataFrame(elo_ratings_dataset)
# Assuming the dataset has columns 'bot_name' and 'elo_rating'
leaderboard_data.columns = ['Chatbot', 'ELO Score']
# Sort the DataFrame based on the ELO Score in descending order
leaderboard_data = leaderboard_data.sort_values('ELO Score', ascending=False)
return leaderboard_data
# Gradio interface setup
with gr.Blocks() as demo:
state = gr.State({})
with gr.Tab("Chatbot Arena"):
with gr.Row():
with gr.Column():
chatbot1 = gr.Chatbot(label='Model A').style(height=600)
upvote_btn_a = gr.Button(value="👍 Upvote A",interactive=False)
with gr.Column():
chatbot2 = gr.Chatbot(label='Model B').style(height=600)
upvote_btn_b = gr.Button(value="👍 Upvote B",interactive=False)
textbox = gr.Textbox(placeholder="Enter your prompt (up to 200 characters)", max_chars=200)
with gr.Row():
submit_btn = gr.Button(value="Send")
reset_btn = gr.Button(value="Reset")
reset_btn.click(clear_chat, inputs=[state], outputs=[state, chatbot1, chatbot2, upvote_btn_a, upvote_btn_b])
textbox.submit(user_ask, inputs=[state, chatbot1, chatbot2, textbox], outputs=[state, chatbot1, chatbot2, textbox,upvote_btn_a,upvote_btn_b])
submit_btn.click(user_ask, inputs=[state, chatbot1, chatbot2, textbox], outputs=[state, chatbot1, chatbot2, textbox,upvote_btn_a,upvote_btn_b])
upvote_btn_a.click(vote_up_model, inputs=[state, chatbot1,chatbot2], outputs=[chatbot1,chatbot2,upvote_btn_a,upvote_btn_b,textbox,submit_btn])
upvote_btn_b.click(vote_down_model, inputs=[state, chatbot1,chatbot2], outputs=[chatbot1,chatbot2,upvote_btn_a,upvote_btn_b,textbox,submit_btn])
with gr.Tab("Leaderboard"):
leaderboard = gr.Dataframe(generate_leaderboard())
refresh_btn = gr.Button("Refresh Leaderboard")
# Function to refresh leaderboard
def refresh_leaderboard():
return generate_leaderboard()
# Event handler for the refresh button
refresh_btn.click(refresh_leaderboard, inputs=[], outputs=[leaderboard])
# Launch the Gradio interface
demo.launch()
|