File size: 16,370 Bytes
9423b6b
a5b48a7
 
 
df24d9c
a5b48a7
ffb29d4
0b9c45d
a5b48a7
c003b8d
a5b48a7
4097bac
 
d51f0d6
 
0668dc0
8e00642
30ed04f
 
7d8811f
30ed04f
 
0668dc0
7d8811f
30ed04f
5158e04
d51f0d6
4097bac
d51f0d6
ec9d3d3
e2a026e
3c23026
 
e2a026e
 
 
 
 
 
 
 
 
 
 
4097bac
65c4df1
 
7ca6d3a
65c4df1
 
 
1823a15
e9bb75c
 
40c75e9
 
 
 
038196b
 
40c75e9
038196b
 
 
40c75e9
df177c1
40c75e9
df177c1
b4b5ce5
7d3d77d
a272cb9
7d3d77d
e2a026e
5b3f957
19deb78
3e0a4e9
 
 
 
29ce4b1
 
3e0a4e9
f9d9169
19deb78
 
 
 
 
45d1701
c01647a
0f925b8
f7528b2
8daff9f
f08fa14
5170342
dfb47fb
 
 
 
3f0dbd7
 
5170342
84fe385
 
 
7178e21
84fe385
12faba6
ba6f9c4
5170342
e417351
7178e21
 
84fe385
7ca6d3a
84fe385
7178e21
84fe385
dfb47fb
 
84fe385
dfb47fb
 
84fe385
dfb47fb
e675f6b
 
dfb47fb
 
e675f6b
84fe385
bb4f1f0
e9bb75c
 
7ca6d3a
 
3421166
7ca6d3a
bb4f1f0
8909c53
bb4f1f0
 
8909c53
4f778fa
e2a026e
 
65c4df1
 
5c13efa
65c4df1
 
 
 
 
 
e2a026e
8e50330
 
e2a026e
fa1169f
 
628ad2b
 
8e50330
 
e2a026e
fa1169f
 
628ad2b
66afc6f
bb4f1f0
0835304
 
1e2df10
 
0835304
 
41b12a8
ffef722
1e2df10
 
0b25d1f
3c23026
cbc49f6
5b3f957
c25a9e9
360577c
6eb3c68
 
 
 
a2df623
eecc81b
 
5b3f957
bb4f1f0
5170342
6eb3c68
5b3f957
 
6eb3c68
 
 
 
25a4d3c
 
0b25d1f
5b3f957
cf47250
5b3f957
66afc6f
4db4ec7
dad0315
 
 
e1b1c8f
0d45e75
e1b1c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
3c23026
 
e2a026e
65c4df1
 
e2a026e
227a710
 
dad0315
65c4df1
e5f7a31
3c23026
 
0668dc0
65c4df1
c5494d3
 
 
 
 
 
0668dc0
cbc3047
 
bea49c0
64c9482
e1ddfc1
5b3f957
628ad2b
0b25d1f
 
3c23026
5c74d7e
 
 
f1d1dd8
 
de1d1bb
5c74d7e
 
f1d1dd8
de1d1bb
5c74d7e
 
30ed04f
5c74d7e
1e2df10
4609e4a
 
d611593
 
5170342
0835304
1e2df10
5c74d7e
cbc49f6
0835304
30ed04f
5c74d7e
628ad2b
9440aa6
 
de1d1bb
5c74d7e
8e50330
 
5c74d7e
 
 
 
 
65c4df1
bde2561
 
5c74d7e
 
 
83df2c0
4609e4a
 
c4c018d
 
 
5c74d7e
3c23026
 
e46ce4e
 
0668dc0
bea49c0
5c74d7e
 
 
3704691
f7dd537
3704691
628ad2b
5c74d7e
 
 
 
43c28d5
e1b1c8f
 
6d84004
e1b1c8f
6d84004
 
 
 
e1b1c8f
f1d1dd8
628ad2b
ca86104
3c23026
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

import gradio as gr
import requests
import os
import pandas as pd
import json
import ssl
import random
from elo import update_elo_ratings  # Custom function for ELO ratings
enable_btn = gr.Button.update(interactive=True)

import sqlite3

from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
async def direct_regenerate(model, user_input, chatbot, character_name, character_description, user_name):
    adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model)
    temp_state = {
        "history": [
            [{"role": "user", "content": chatbot[-1][0]}]  # Keep the user's last message
        ]
    }
    response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name)
    chatbot[-1] = (chatbot[-1][0], response)  # Update only the assistant's response
    return "", chatbot
password=os.environ.get("MONGODB")

def init_database():
    uri = f"mongodb+srv://new-user:{password}@cluster0.xb2urf6.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0"
    client = MongoClient(uri)
    db = client["elo_ratings"]
    collection = db["elo_ratings"]
    return collection

def get_user_elo_ratings(collection):
    rows = list(collection.find())
    if rows:
        return {row['bot_name']: {'elo_rating': row['elo_rating'], 'games_played': row['games_played']} for row in rows}
    else:
        return {"default": {'elo_rating': 1200, 'games_played': 0}}

def update_elo_rating(collection, updated_ratings, winner, loser):
    collection.update_one({"bot_name": winner}, {"$set": {"elo_rating": updated_ratings[winner]['elo_rating'], "games_played": updated_ratings[winner]['games_played']}}, upsert=True)
    collection.update_one({"bot_name": loser}, {"$set": {"elo_rating": updated_ratings[loser]['elo_rating'], "games_played": updated_ratings[loser]['games_played']}}, upsert=True)

import json

with open('chatbots.txt', 'r') as file:
    chatbots_data = json.load(file)
    chatbots = [entry['adapter'] for entry in chatbots_data]
    
def clear_chat(state):
    # Reset state including the chatbot order
    state = {} if state is not None else state
    
    # Initialize the collection object
    collection = init_database()
    
    # Get the list of adapter names
    adapter_names = [entry['adapter'] for entry in chatbots_data]
    
    # Randomly select two new adapters
    selected_adapters = random.sample(adapter_names, 2)
    state['last_bots'] = selected_adapters
    
    # Reset other components specific to the "Chatbot Arena" tab
    return state, [], [], gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(value='', interactive=True), gr.Button.update(interactive=True)
    
from datasets import load_dataset,DatasetDict,Dataset
import requests
import os


# Function to get bot response
def format_prompt(state, bot_index, character_name, character_description, user_name, num_messages=5):
    if character_name is None or character_name.strip() == "":
        character_name = "Ryan"
    if character_description is None or character_description.strip() == "":
        character_description = "Ryan is a college student who is always willing to help. He knows a lot about math and coding."
    if user_name is None or user_name.strip() == "":
        user_name = "You"

    prompt = f"{character_description}\n"
    
    # Get the last num_messages messages from the conversation history
    recent_messages = state["history"][bot_index][-num_messages:]
    
    for message in recent_messages:
        if message['role'] == 'user':
            prompt += f"{user_name}: {message['content']}\n"
        else:
            prompt += f"{character_name}: {message['content']}\n"
    prompt += f"{character_name}: "
    print(prompt)
    return prompt
import aiohttp
import asyncio
from tenacity import retry, stop_after_attempt, wait_exponential

async def get_bot_response(adapter_id, prompt, state, bot_index, character_name, character_description, user_name):
    prompt = format_prompt(state, bot_index, character_name, character_description, user_name)

    fireworks_adapter_name = next(entry['fireworks_adapter_name'] for entry in chatbots_data if entry['adapter'] == adapter_id)

    url = "https://api.fireworks.ai/inference/v1/completions"
    payload = {
        "model": f"accounts/gaingg19-432d9f/models/{fireworks_adapter_name}",
        "max_tokens": 250,
        "temperature": 0.7,
        "prompt": prompt,
        "stop": ["<|im_end|>",f"{character_name}:",f"{user_name}:"]
    }
    headers = {
        "Accept": "application/json",
        "Content-Type": "application/json",
        "Authorization": f"Bearer {os.environ.get('FIREWORKS_API_KEY')}"
    }

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(url, json=payload, headers=headers, timeout=30) as response:
                if response.status == 200:
                    response_data = await response.json()
                    response_text = response_data['choices'][0]['text']
                else:
                    error_text = await response.text()
                    print(error_text)
                    response_text = "Sorry, I couldn't generate a response."
        except (aiohttp.ClientError, asyncio.TimeoutError):
            response_text = "Sorry, I couldn't generate a response."
    return response_text.strip()
async def chat_with_bots(user_input, state, character_name, character_description, user_name):
    # Use existing bot order from state if available, otherwise shuffle and initialize
    if 'last_bots' not in state or not state['last_bots']:
        random.shuffle(chatbots)
        state['last_bots'] = [chatbots[0], chatbots[1]]
    
    bot1_adapter, bot2_adapter = state['last_bots'][0], state['last_bots'][1]
    
    bot1_response, bot2_response = await asyncio.gather(
        get_bot_response(bot1_adapter, user_input, state, 0, character_name, character_description, user_name),
        get_bot_response(bot2_adapter, user_input, state, 1, character_name, character_description, user_name)
    )
    return bot1_response.replace("<|im_end|>",""), bot2_response.replace("<|im_end|>","")
def update_ratings(state, winner_index, collection):
    elo_ratings = get_user_elo_ratings(collection)
    winner_adapter = state['last_bots'][winner_index]
    loser_adapter = state['last_bots'][1 - winner_index]
    
    winner = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == winner_adapter)
    loser = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == loser_adapter)
    
    elo_ratings = update_elo_ratings(elo_ratings, winner_adapter, loser_adapter)
    update_elo_rating(collection, elo_ratings, winner_adapter, loser_adapter)
    return [('Winner: ', winner), ('Loser: ', loser)]
    
def vote_up_model(state, chatbot, chatbot2):
    collection = init_database()
    update_message = update_ratings(state, 0, collection)
    chatbot.append(update_message[0])
    chatbot2.append(update_message[1])
    return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False)

def vote_down_model(state, chatbot, chatbot2):
    collection = init_database()
    update_message = update_ratings(state, 1, collection)
    chatbot2.append(update_message[0])
    chatbot.append(update_message[1])
    return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False)

async def user_ask(state, chatbot1, chatbot2, textbox, character_name, character_description, user_name):
    if character_name and len(character_name) > 20:
        character_name = character_name[:20]  # Limit character name to 20 characters
    if character_description and len(character_description) > 500:
        character_description = character_description[:500]  # Limit character description to 200 characters
    if user_name and len(user_name) > 20:
        user_name = user_name[:20]  # Limit user name to 20 characters
    global enable_btn
    user_input = textbox
    if len(user_input) > 500:
        user_input = user_input[:500]  # Limit user input to 200 characters

    collection = init_database()  # Initialize the collection object
    # Keep only the last 10 messages in history
    # Updating state with the current ELO ratings
    state["elo_ratings"] = get_user_elo_ratings(collection)
    if "history" not in state:
        state.update({'history': [[],[]]})
    state["history"][0].extend([
        {"role": "user", "content": user_input}])
    state["history"][1].extend([
        {"role": "user", "content": user_input}])
    if len(state["history"])>20:
        state["history"] = state["history"][-20:]
    # Chat with bots
    bot1_response, bot2_response = await chat_with_bots(user_input, state, character_name, character_description, user_name)

    state["history"][0].extend([
        {"role": "bot1", "content": bot1_response},
    ])
    state["history"][1].extend([
        {"role": "bot2", "content": bot2_response},
    ])
    
    chatbot1.append((user_input,bot1_response))
    chatbot2.append((user_input,bot2_response))

    # Keep only the last 10 messages in history

    # Format the conversation in ChatML format

    return state, chatbot1, chatbot2, gr.update(value=''),enable_btn,enable_btn
import pandas as pd

# Function to generate leaderboard data
import requests

def submit_model(model_name):
    discord_url = os.environ.get("DISCORD_URL")
    if discord_url:
        payload = {
            "content": f"New model submitted: {model_name}"
        }
        response = requests.post(discord_url, json=payload)
        if response.status_code == 204:
            return "Model submitted successfully!"
        else:
            return "Failed to submit the model."
    else:
        return "Discord webhook URL not configured."
        
def generate_leaderboard(collection):
    rows = list(collection.find())
    leaderboard_data = pd.DataFrame(rows, columns=['bot_name', 'elo_rating', 'games_played'])
    leaderboard_data['original_model'] = leaderboard_data['bot_name'].apply(lambda x: next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == x))
    leaderboard_data = leaderboard_data[['original_model', 'elo_rating', 'games_played']]
    leaderboard_data.columns = ['Chatbot', 'ELO Score', 'Games Played']
    leaderboard_data['ELO Score'] = leaderboard_data['ELO Score'].round().astype(int)
    leaderboard_data = leaderboard_data.sort_values('ELO Score', ascending=False)
    return leaderboard_data
    
def refresh_leaderboard():
    collection = init_database()
    return generate_leaderboard(collection)
async def direct_chat(model, user_input, chatbot, character_name, character_description, user_name):
    adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model)
    temp_state = {
        "history": [
            [{"role": "user", "content": user_input}],
            [{"role": "user", "content": user_input}]
        ]
    }
    response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name)
    chatbot.append((user_input, response))
    return "", chatbot
def reset_direct_chat():
    return [], gr.Textbox.update(value='')
refresh_leaderboard()
# Gradio interface setup
# Gradio interface setup
with gr.Blocks() as demo:
    state = gr.State({})

    with gr.Tab("πŸ€– Chatbot Arena"):
        gr.Markdown("## πŸ₯Š Let's see which chatbot wins!")
        
        with gr.Row():
            with gr.Column():
                chatbot1 = gr.Chatbot(label='πŸ€– Model A').style(height=350)
                upvote_btn_a = gr.Button(value="πŸ‘ Upvote A", interactive=False).style(full_width=True)

            with gr.Column():
                chatbot2 = gr.Chatbot(label='πŸ€– Model B').style(height=350)
                upvote_btn_b = gr.Button(value="πŸ‘ Upvote B", interactive=False).style(full_width=True)
        
        with gr.Row():
            with gr.Column(scale=5):
                textbox = gr.Textbox(placeholder="🎀 Enter your prompt (up to 500 characters)")
            submit_btn = gr.Button(value="Submit")

        with gr.Row():
            reset_btn = gr.Button(value="πŸ—‘οΈ Reset")
        with gr.Row():
            character_name = gr.Textbox(label="Character Name", value="Ryan", placeholder="Enter character name (max 20 chars)")
            character_description = gr.Textbox(label="Character Description", value="Ryan is a college student who is always willing to help. He knows a lot about math and coding.", placeholder="Enter character description (max 500 chars)")

        with gr.Row():
            user_name = gr.Textbox(label="Your Name", value="You", placeholder="Enter your name (max 20 chars)")
        # ...

        reset_btn.click(clear_chat, inputs=[state], outputs=[state, chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])
        submit_btn.click(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True)
        textbox.submit(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True)
        collection = init_database()

        upvote_btn_a.click(vote_up_model, inputs=[state, chatbot1, chatbot2], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])
        upvote_btn_b.click(vote_down_model, inputs=[state, chatbot1, chatbot2], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])

    with gr.Tab("πŸ’¬ Direct Chat"):
        gr.Markdown("## πŸ—£οΈ Chat directly with a model!")
        
        with gr.Row():
            model_dropdown = gr.Dropdown(choices=[entry['original_model'] for entry in chatbots_data], value=chatbots_data[0]['original_model'], label="πŸ€– Select a model")
        with gr.Row():
            direct_chatbot = gr.Chatbot(label="πŸ’¬ Direct Chat").style(height=500)
        
        with gr.Row():
            with gr.Column(scale=5):
                direct_textbox = gr.Textbox(placeholder="πŸ’­ Enter your message")
            direct_submit_btn = gr.Button(value="Submit")

        with gr.Row():
            direct_regenerate_btn = gr.Button(value="πŸ”„ Regenerate")
            direct_reset_btn = gr.Button(value="πŸ—‘οΈ Reset Chat")

        # ...

        direct_regenerate_btn.click(direct_regenerate, inputs=[model_dropdown, direct_textbox, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot])
        direct_textbox.submit(direct_chat, inputs=[model_dropdown, direct_textbox, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot])
        direct_submit_btn.click(direct_chat, inputs=[model_dropdown, direct_textbox, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot])
        direct_reset_btn.click(reset_direct_chat, None, [direct_chatbot, direct_textbox])
    with gr.Tab("πŸ† Leaderboard"):
        gr.Markdown("## πŸ“Š Check out the top-performing models!")
        
        try:
            leaderboard = gr.Dataframe(refresh_leaderboard())
        except:
            leaderboard = gr.Dataframe()

        with gr.Row():
            refresh_btn = gr.Button("πŸ”„ Refresh Leaderboard")
        
        refresh_btn.click(refresh_leaderboard, outputs=[leaderboard])
        
    with gr.Tab("πŸ“¨ Submit Model"):
        gr.Markdown("## πŸ“¨ Submit a new model to be added to the chatbot arena!")
    
        with gr.Row():
            model_name_input = gr.Textbox(placeholder="Enter the model name")
            submit_model_btn = gr.Button(value="Submit Model")
            submit_model_btn.click(submit_model, inputs=[model_name_input], outputs=[model_name_input])


# Launch the Gradio interface
if __name__ == "__main__":
    demo.launch(share=False)