File size: 8,585 Bytes
a5b48a7
 
 
ade1d2c
a5b48a7
0b9c45d
a5b48a7
c003b8d
a5b48a7
5b3f957
a5b48a7
 
1823a15
e9bb75c
 
 
 
 
 
 
 
7d3d77d
 
 
45dd2d8
7d3d77d
a272cb9
7d3d77d
 
0eb4a58
7d3d77d
 
 
c99b95e
7d3d77d
 
 
a272cb9
 
 
 
c99b95e
6a93857
895d918
5b3f957
5b6eec5
 
3c0c20b
 
0f925b8
 
 
 
 
 
3c0c20b
 
 
 
 
 
 
 
 
5b6eec5
7178e21
 
3c0c20b
7178e21
5a3a71e
7178e21
3b6bdd2
7178e21
 
 
 
 
 
 
 
 
5b6eec5
66afc6f
3421166
e9bb75c
 
 
 
 
3421166
e9bb75c
3421166
e9bb75c
 
a5b48a7
 
 
66afc6f
7d3d77d
5c13efa
0db6418
 
5c13efa
 
c99b95e
fa1169f
66afc6f
4c3c8bf
66afc6f
fa1169f
 
1b8f04a
4c3c8bf
 
fa1169f
 
1b8f04a
66afc6f
5b3f957
41b12a8
ffef722
5b3f957
 
0b25d1f
5b3f957
7d3d77d
360577c
6eb3c68
 
 
 
a2df623
5b3f957
 
6eb3c68
5b3f957
 
6eb3c68
 
 
 
25a4d3c
 
0b25d1f
5b3f957
 
cf47250
5b3f957
66afc6f
41b12a8
dad0315
 
 
0d45e75
dad0315
0d45e75
 
 
 
 
c31f1de
0d45e75
 
c31f1de
 
 
0d45e75
dad0315
0d45e75
dad0315
0b25d1f
0d45e75
e5f7a31
 
5b3f957
0b25d1f
 
f1d1dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
a44076e
f1d1dd8
 
1b8f04a
 
f1d1dd8
5ee7013
f1d1dd8
 
 
e5f7a31
f1d1dd8
 
 
 
 
ca86104
6c9a789
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import requests
import os
#
import json
import random
from elo import update_elo_ratings  # Custom function for ELO ratings
enable_btn = gr.Button.update(interactive=True)

# Load chatbot URLs and model names from a JSON file
with open('chatbot_urls.json', 'r') as file:
    chatbots = json.load(file)
def clear_chat(state):
    # Reset state including the chatbot order
    state = {} if state is not None else state
    # Shuffle and reinitialize chatbots in the state
    bot_names = list(chatbots.keys())
    random.shuffle(bot_names)
    state['last_bots'] = [bot_names[0], bot_names[1]]
    # Reset other components
    return state, None, None, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False)



from datasets import load_dataset,DatasetDict
import requests
import os

def get_user_elo_ratings():
    dataset = load_dataset("rwitz/mistral-elo-ratings",download_mode="force_redownload")
    elo_ratings = dataset['train']  # or the relevant split
    return elo_ratings

def update_elo_rating(new_rating,winner,loser):
    # Fetch the current dataset
    elo_ratings = get_user_elo_ratings()

    # Function to update the rating of a specific player

    # Update the dataset
    # Convert updated dataset to a dictionary for pushing
    updated_ratings=update_elo_ratings(elo_ratings,winner,loser)
    updated_ratings.push_to_hub("rwitz/mistral-elo-ratings",token=os.environ.get("huggingface_token"))
    
# Function to get bot response
def format_alpaca_prompt(state):
    alpaca_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
    alpaca_prompt2 = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
    for message in state["history"][0]:
        j=""
        if message['role']=='user':
            j="### Instruction:\n"
        else:
            j="### Response:\n"
        alpaca_prompt += j+ message['content']+"\n\n"
    for message in state["history"][1]:
        j=""
        if message['role']=='user':
            j="### Instruction:\n"
        else:
            j="### Response:\n"
        alpaca_prompt2 += j+ message['content']+"\n\n"
    return [alpaca_prompt+"### Response:\n",alpaca_prompt2+"### Response:\n"]
def get_bot_response(url, prompt,state,bot_index):
    alpaca_prompt = format_alpaca_prompt(state)
    payload = {
        "input": {
            "prompt": alpaca_prompt[bot_index],
            "sampling_params": {
                "max_new_tokens": 50,
                "temperature": 0.7,
                "top_p":0.95
            }
        }
    }
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": os.environ.get("RUNPOD_TOKEN")
    }
    response = requests.post(url, json=payload, headers=headers)
    return response.json()['output'].split('### Instruction')[0]

def chat_with_bots(user_input, state):
    # Use existing bot order from state if available, otherwise shuffle and initialize
    if 'last_bots' not in state or not state['last_bots']:
        bot_names = list(chatbots.keys())
        random.shuffle(bot_names)
        state['last_bots'] = [bot_names[0], bot_names[1]]
    
    bot1_url, bot2_url = chatbots[state['last_bots'][0]], chatbots[state['last_bots'][1]]

    bot1_response = get_bot_response(bot1_url, user_input, state, 0)
    bot2_response = get_bot_response(bot2_url, user_input, state, 1)

    return bot1_response, bot2_response

def update_ratings(state, winner_index):
    elo_ratings = get_user_elo_ratings()
    bot_names = list(chatbots.keys())
    winner = state['last_bots'][winner_index]
    loser = state['last_bots'][1 - winner_index]
    
    elo_ratings = update_elo_ratings(elo_ratings, winner, loser)
    update_elo_rating(elo_ratings,winner,loser)
    return [('Winner: ',state['last_bots'][winner_index]),('Loser: ',state['last_bots'][1 - winner_index])]

def vote_up_model(state, chatbot,chatbot2):
    update_message = update_ratings(state, 0)
    chatbot.append(update_message[0])
    chatbot2.append(update_message[1])
    return chatbot, chatbot2,gr.Button.update(interactive=False),gr.Button.update(interactive=False),gr.Textbox.update(interactive=False),gr.Button.update(interactive=False)  # Disable voting buttons
def vote_down_model(state, chatbot,chatbot2):
    update_message = update_ratings(state, 1)
    chatbot2.append(update_message[0])
    chatbot.append(update_message[1])
    return chatbot,chatbot2, gr.Button.update(interactive=False),gr.Button.update(interactive=False),gr.Textbox.update(interactive=False),gr.Button.update(interactive=False)  # Disable voting buttons

def user_ask(state, chatbot1, chatbot2, textbox):
    global enable_btn
    user_input = textbox
    if len(user_input) > 200:
        user_input = user_input[:200]  # Limit user input to 200 characters

    # Updating state with the current ELO ratings
    state["elo_ratings"] = get_user_elo_ratings()
    if "history" not in state:
        state.update({'history': [[],[]]})
    state["history"][0].extend([
        {"role": "user", "content": user_input}])
    state["history"][1].extend([
        {"role": "user", "content": user_input}])
    # Chat with bots
    bot1_response, bot2_response = chat_with_bots(user_input, state)
    state["history"][0].extend([
        {"role": "bot1", "content": bot1_response},
    ])
    state["history"][1].extend([
        {"role": "bot2", "content": bot2_response},
    ])
    
    chatbot1.append((user_input,bot1_response))
    chatbot2.append((user_input,bot2_response))

    # Keep only the last 10 messages in history
    state["history"] = state["history"][-10:]

    # Format the conversation in ChatML format

    return state, chatbot1, chatbot2, textbox,enable_btn,enable_btn
import pandas as pd

# Function to generate leaderboard data

def generate_leaderboard():
    elo_ratings_dataset = get_user_elo_ratings()  # Returns a Hugging Face dataset

    # Convert the Hugging Face dataset to a pandas DataFrame
    leaderboard_data = pd.DataFrame(elo_ratings_dataset)

    # Rename columns to 'Chatbot' and 'ELO Score'
    leaderboard_data.columns = ['Chatbot', 'ELO Score']

    # Round the ELO Score to the nearest whole number
    leaderboard_data['ELO Score'] = leaderboard_data['ELO Score'].round()

    # Sort the DataFrame based on the ELO Score in descending order
    leaderboard_data = leaderboard_data.sort_values('ELO Score', ascending=False)

    return leaderboard_data


def refresh_leaderboard():
    return generate_leaderboard()
# Gradio interface setup
with gr.Blocks() as demo:
    state = gr.State({})
    with gr.Tab("Chatbot Arena"):
        with gr.Row():
            with gr.Column():
                chatbot1 = gr.Chatbot(label='Model A').style(height=600)
                upvote_btn_a = gr.Button(value="👍 Upvote A",interactive=False)
            
            with gr.Column():
                chatbot2 = gr.Chatbot(label='Model B').style(height=600)
                upvote_btn_b = gr.Button(value="👍 Upvote B",interactive=False)        
    
        textbox = gr.Textbox(placeholder="Enter your prompt (up to 200 characters)", max_chars=200)
        with gr.Row():
            submit_btn = gr.Button(value="Send")
            reset_btn = gr.Button(value="Reset")
        reset_btn.click(clear_chat, inputs=[state], outputs=[state, chatbot1, chatbot2, upvote_btn_a, upvote_btn_b,textbox,submit_btn])
        textbox.submit(user_ask, inputs=[state, chatbot1, chatbot2, textbox], outputs=[state, chatbot1, chatbot2, textbox,upvote_btn_a,upvote_btn_b])
        submit_btn.click(user_ask, inputs=[state, chatbot1, chatbot2, textbox], outputs=[state, chatbot1, chatbot2, textbox,upvote_btn_a,upvote_btn_b])
        upvote_btn_a.click(vote_up_model, inputs=[state, chatbot1,chatbot2], outputs=[chatbot1,chatbot2,upvote_btn_a,upvote_btn_b,textbox,submit_btn])
        upvote_btn_b.click(vote_down_model, inputs=[state, chatbot1,chatbot2], outputs=[chatbot1,chatbot2,upvote_btn_a,upvote_btn_b,textbox,submit_btn])
    with gr.Tab("Leaderboard"):
        leaderboard = gr.Dataframe(refresh_leaderboard())
        refresh_btn = gr.Button("Refresh Leaderboard")

    # Function to refresh leaderboard


    # Event handler for the refresh button
    refresh_btn.click(refresh_leaderboard, inputs=[], outputs=[leaderboard])

    # Launch the Gradio interface
if __name__ == "__main__":
    demo.launch(share=False)