Spaces:
Runtime error
Runtime error
File size: 1,930 Bytes
dd89a50 79132a6 d5f3e47 dd89a50 d5f3e47 dd89a50 d5f3e47 9cca78f d5f3e47 dd89a50 a7460e5 dd89a50 79132a6 dd89a50 a7460e5 dd89a50 79132a6 d5f3e47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import pandas as pd
from datasets import Dataset
def calculate_elo(old_rating, opponent_rating, score, k_factor=32):
"""
Calculate the new ELO rating for a player.
:param old_rating: The current ELO rating of the player.
:param opponent_rating: The ELO rating of the opponent.
:param score: The score of the game (1 for win, 0.5 for draw, 0 for loss).
:param k_factor: The K-factor used in ELO rating (default is 32).
:return: The new ELO rating.
"""
expected_score = 1 / (1 + 10 ** ((opponent_rating - old_rating) / 400))
new_rating = old_rating + k_factor * (score - expected_score)
return new_rating
def update_elo_ratings(ratings_dataset, winner, loser, k_factor=32):
# Convert the Hugging Face dataset to a pandas DataFrame
ratings_df = pd.DataFrame(ratings_dataset)
# Check and add new players if they don't exist in the dataset
for player in [winner, loser]:
if player not in ratings_df['bot_name'].values:
new_player = {'bot_name': player, 'elo_rating': 1200}
ratings_df = pd.concat([ratings_df,pd.DataFrame([new_player])],ignore_index=True)
# Extract old ratings
winner_old_rating = ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'].iloc[0]
loser_old_rating = ratings_df.loc[ratings_df['bot_name'] == loser, 'elo_rating'].iloc[0]
# Calculate new ratings
winner_new_rating = calculate_elo(winner_old_rating, loser_old_rating, 1, k_factor)
loser_new_rating = calculate_elo(loser_old_rating, winner_old_rating, 0, k_factor)
# Update the DataFrame
ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'] = winner_new_rating
ratings_df.loc[ratings_df['bot_name'] == loser, 'elo_rating'] = loser_new_rating
# Convert the DataFrame back to a Hugging Face dataset
updated_ratings_dataset = Dataset.from_pandas(ratings_df)
return updated_ratings_dataset |