Update app.py
Browse files
app.py
CHANGED
@@ -10,20 +10,16 @@ import plotly.graph_objects as go
|
|
10 |
# Set page configuration
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
|
|
13 |
def load_and_clean_data():
|
14 |
-
# Load data
|
15 |
df1 = pd.read_csv("data/reviewed_social_media_english.csv")
|
16 |
df2 = pd.read_csv("data/reviewed_news_english.csv")
|
17 |
df3 = pd.read_csv("data/tamil_social_media.csv")
|
18 |
df4 = pd.read_csv("data/tamil_news.csv")
|
19 |
|
20 |
-
# Concatenate dataframes
|
21 |
df_combined = pd.concat([df1, df2, df3, df4])
|
22 |
-
|
23 |
-
# Normalize Text
|
24 |
df_combined['Domain'] = df_combined['Domain'].replace("MUSLIM", "Muslim")
|
25 |
-
|
26 |
-
# Drop irrelevant data
|
27 |
df_combined = df_combined[df_combined['Domain'] != 'Not relevant']
|
28 |
df_combined = df_combined[df_combined['Domain'] != 'None']
|
29 |
df_combined = df_combined[df_combined['Discrimination'] != 'None']
|
@@ -31,12 +27,8 @@ def load_and_clean_data():
|
|
31 |
|
32 |
return df_combined
|
33 |
|
34 |
-
# Load and clean data
|
35 |
df = load_and_clean_data()
|
36 |
|
37 |
-
# Page navigation
|
38 |
-
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])
|
39 |
-
|
40 |
# Define Sidebar Filters
|
41 |
domain_options = df['Domain'].unique()
|
42 |
channel_options = df['Channel'].unique()
|
@@ -48,53 +40,47 @@ channel_filter = st.sidebar.multiselect('Select Channel', options=channel_option
|
|
48 |
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
|
49 |
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)
|
50 |
|
51 |
-
# Apply
|
52 |
df_filtered = df[(df['Domain'].isin(domain_filter)) &
|
53 |
(df['Channel'].isin(channel_filter)) &
|
54 |
(df['Sentiment'].isin(sentiment_filter)) &
|
55 |
(df['Discrimination'].isin(discrimination_filter))]
|
56 |
|
57 |
-
|
58 |
# Define a color palette for consistent visualization styles
|
59 |
color_palette = px.colors.sequential.Viridis
|
60 |
|
61 |
-
# Visualization function
|
62 |
-
def create_visualizations(df):
|
63 |
-
# [Existing visualization code]
|
64 |
-
pass
|
65 |
-
|
66 |
# Page navigation
|
67 |
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
elif page == "Discrimination Analysis":
|
74 |
-
create_visualizations(df) # Placeholder for discrimination analysis visualizations
|
75 |
-
elif page == "Channel Analysis":
|
76 |
-
create_visualizations(df) # Placeholder for channel analysis visualizations
|
77 |
-
|
78 |
-
# [Place the rest of the code for the visualizations here]
|
79 |
-
|
80 |
-
|
81 |
-
# Define a color palette for consistent visualization styles
|
82 |
-
color_palette = px.colors.sequential.Viridis
|
83 |
-
|
84 |
-
# Function for Domain Distribution Chart
|
85 |
-
def create_domain_distribution_chart(df):
|
86 |
-
fig = px.pie(df, names='Domain', title='Distribution of Domains', hole=0.35)
|
87 |
-
fig.update_layout(title_x=0.5, margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1))
|
88 |
fig.update_traces(marker=dict(colors=color_palette))
|
89 |
return fig
|
90 |
|
91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def create_sentiment_distribution_chart(df):
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
return fig
|
96 |
|
97 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Function for Channel-wise Sentiment Over Time Chart
|
100 |
def create_channel_sentiment_over_time_chart(df):
|
@@ -111,20 +97,40 @@ def create_channel_discrimination_chart(df):
|
|
111 |
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=40, b=20))
|
112 |
return fig
|
113 |
|
114 |
-
|
115 |
-
def render_dashboard():
|
116 |
-
# Overview page layout
|
117 |
if page == "Overview":
|
118 |
-
st.
|
|
|
119 |
col1, col2 = st.beta_columns(2)
|
120 |
with col1:
|
121 |
-
st.plotly_chart(
|
122 |
with col2:
|
123 |
-
st.plotly_chart(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# Render the dashboard with filtered data
|
130 |
-
render_dashboard(df_filtered)
|
|
|
10 |
# Set page configuration
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
13 |
+
# Function to load and clean data
|
14 |
def load_and_clean_data():
|
|
|
15 |
df1 = pd.read_csv("data/reviewed_social_media_english.csv")
|
16 |
df2 = pd.read_csv("data/reviewed_news_english.csv")
|
17 |
df3 = pd.read_csv("data/tamil_social_media.csv")
|
18 |
df4 = pd.read_csv("data/tamil_news.csv")
|
19 |
|
20 |
+
# Concatenate dataframes and clean data
|
21 |
df_combined = pd.concat([df1, df2, df3, df4])
|
|
|
|
|
22 |
df_combined['Domain'] = df_combined['Domain'].replace("MUSLIM", "Muslim")
|
|
|
|
|
23 |
df_combined = df_combined[df_combined['Domain'] != 'Not relevant']
|
24 |
df_combined = df_combined[df_combined['Domain'] != 'None']
|
25 |
df_combined = df_combined[df_combined['Discrimination'] != 'None']
|
|
|
27 |
|
28 |
return df_combined
|
29 |
|
|
|
30 |
df = load_and_clean_data()
|
31 |
|
|
|
|
|
|
|
32 |
# Define Sidebar Filters
|
33 |
domain_options = df['Domain'].unique()
|
34 |
channel_options = df['Channel'].unique()
|
|
|
40 |
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
|
41 |
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)
|
42 |
|
43 |
+
# Apply filters
|
44 |
df_filtered = df[(df['Domain'].isin(domain_filter)) &
|
45 |
(df['Channel'].isin(channel_filter)) &
|
46 |
(df['Sentiment'].isin(sentiment_filter)) &
|
47 |
(df['Discrimination'].isin(discrimination_filter))]
|
48 |
|
|
|
49 |
# Define a color palette for consistent visualization styles
|
50 |
color_palette = px.colors.sequential.Viridis
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
# Page navigation
|
53 |
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])
|
54 |
|
55 |
+
# Visualisation for Domain Distribution
|
56 |
+
def create_pie_chart(df, column, title):
|
57 |
+
fig = px.pie(df, names=column, title=title, hole=0.35)
|
58 |
+
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
fig.update_traces(marker=dict(colors=color_palette))
|
60 |
return fig
|
61 |
|
62 |
+
# Visualization for Distribution of Gender versus Ethnicity
|
63 |
+
def create_gender_ethnicity_distribution_chart(df):
|
64 |
+
df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
|
65 |
+
fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
|
66 |
+
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
|
67 |
+
return fig
|
68 |
+
|
69 |
+
# Visualization for Sentiment Distribution Across Domains
|
70 |
def create_sentiment_distribution_chart(df):
|
71 |
+
df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"}) # Assuming typo in the original script
|
72 |
+
domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
|
73 |
+
fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
|
74 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=12))
|
75 |
return fig
|
76 |
|
77 |
+
# Visualization for Correlation between Sentiment and Discrimination
|
78 |
+
def create_sentiment_discrimination_grouped_chart(df):
|
79 |
+
crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination']).reset_index()
|
80 |
+
melted_df = pd.melt(crosstab_df, id_vars='Sentiment', value_vars=['Yes', 'No'], var_name='Discrimination', value_name='Count')
|
81 |
+
fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
|
82 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
|
83 |
+
return fig
|
84 |
|
85 |
# Function for Channel-wise Sentiment Over Time Chart
|
86 |
def create_channel_sentiment_over_time_chart(df):
|
|
|
97 |
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=40, b=20))
|
98 |
return fig
|
99 |
|
100 |
+
def render_dashboard(page, df_filtered):
|
|
|
|
|
101 |
if page == "Overview":
|
102 |
+
st.title("Overview Dashboard")
|
103 |
+
# Create 2x2 grid for overview visualizations
|
104 |
col1, col2 = st.beta_columns(2)
|
105 |
with col1:
|
106 |
+
st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
|
107 |
with col2:
|
108 |
+
st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))
|
109 |
+
|
110 |
+
col3, col4 = st.beta_columns(2)
|
111 |
+
with col3:
|
112 |
+
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
|
113 |
+
with col4:
|
114 |
+
st.plotly_chart(create_sentiment_discrimination_grouped_chart(df_filtered))
|
115 |
+
|
116 |
+
elif page == "Sentiment Analysis":
|
117 |
+
st.title("Sentiment Analysis Dashboard")
|
118 |
+
# Implementation for the "Sentiment Analysis" page...
|
119 |
+
# Example: st.plotly_chart(create_some_other_chart(df_filtered))
|
120 |
+
|
121 |
+
elif page == "Discrimination Analysis":
|
122 |
+
st.title("Discrimination Analysis Dashboard")
|
123 |
+
# Implementation for the "Discrimination Analysis" page...
|
124 |
+
# Example: st.plotly_chart(create_another_chart(df_filtered))
|
125 |
+
|
126 |
+
elif page == "Channel Analysis":
|
127 |
+
st.title("Channel Analysis Dashboard")
|
128 |
+
# Create visualizations for the channel analysis page
|
129 |
+
col1, col2 = st.columns(2)
|
130 |
+
with col1:
|
131 |
+
st.plotly_chart(create_channel_sentiment_over_time_chart(df_filtered))
|
132 |
+
with col2:
|
133 |
+
st.plotly_chart(create_channel_discrimination_chart(df_filtered))
|
134 |
|
135 |
# Render the dashboard with filtered data
|
136 |
+
render_dashboard(page, df_filtered)
|