Upload run.py
Browse files
run.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from components.vector_db_operations import get_collection_from_vector_db
|
2 |
+
from components.vector_db_operations import retrieval
|
3 |
+
from components.english_information_extraction import english_information_extraction
|
4 |
+
from components.multi_lingual_model import MDFEND , loading_model_and_tokenizer
|
5 |
+
from components.data_loading import preparing_data , loading_data
|
6 |
+
from components.language_identification import language_identification
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def run_pipeline(input_text:str):
|
11 |
+
|
12 |
+
language_dict = language_identification(input_text)
|
13 |
+
language_code = next(iter(language_dict))
|
14 |
+
|
15 |
+
if language_code == "en":
|
16 |
+
|
17 |
+
output_english = english_information_extraction(input_text)
|
18 |
+
|
19 |
+
return output_english
|
20 |
+
|
21 |
+
else:
|
22 |
+
|
23 |
+
|
24 |
+
num_results = 1
|
25 |
+
path = "/content/drive/MyDrive/general_domains/vector_database"
|
26 |
+
collection_name = "general_domains"
|
27 |
+
|
28 |
+
|
29 |
+
collection = get_collection_from_vector_db(path , collection_name)
|
30 |
+
|
31 |
+
domain , label_domain , distance = retrieval(input_text , num_results , collection )
|
32 |
+
|
33 |
+
if distance >1.45:
|
34 |
+
domain = "undetermined"
|
35 |
+
|
36 |
+
tokenizer , model = loading_model_and_tokenizer()
|
37 |
+
|
38 |
+
df = preparing_data(input_text , label_domain)
|
39 |
+
|
40 |
+
input_ids , input_masks , input_domains = loading_data(tokenizer , df )
|
41 |
+
|
42 |
+
labels = []
|
43 |
+
outputs = []
|
44 |
+
with torch.no_grad():
|
45 |
+
|
46 |
+
pred = model.forward(input_ids, input_masks , input_domains)
|
47 |
+
labels.append([])
|
48 |
+
|
49 |
+
for output in pred:
|
50 |
+
number = output.item()
|
51 |
+
label = int(1) if number >= 0.5 else int(0)
|
52 |
+
labels[-1].append(label)
|
53 |
+
outputs.append(pred)
|
54 |
+
|
55 |
+
discrimination_class = ["discriminative" if i == int(1) else "not discriminative" for i in labels[0]]
|
56 |
+
|
57 |
+
|
58 |
+
return { "domain_label" :domain ,
|
59 |
+
"domain_score":distance ,
|
60 |
+
"discrimination_label" : discrimination_class[-1],
|
61 |
+
"discrimination_score" : outputs[0][1:].item(),
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|