Upload full_inference_pipeline.ipynb
Browse files
notebook/full_inference_pipeline.ipynb
ADDED
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"! pip install faknow sentence-transformers chromadb\n"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "83T0FpMEgAK7",
|
27 |
+
"outputId": "4efafed8-69d4-4575-b473-825e6931b4c5"
|
28 |
+
},
|
29 |
+
"execution_count": 27,
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"output_type": "stream",
|
33 |
+
"name": "stdout",
|
34 |
+
"text": [
|
35 |
+
"Requirement already satisfied: faknow in /usr/local/lib/python3.10/dist-packages (0.0.3)\n",
|
36 |
+
"Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.6.1)\n",
|
37 |
+
"Requirement already satisfied: chromadb in /usr/local/lib/python3.10/dist-packages (0.4.24)\n",
|
38 |
+
"Requirement already satisfied: transformers>=4.26.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.38.2)\n",
|
39 |
+
"Requirement already satisfied: numpy>=1.23.4 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.25.2)\n",
|
40 |
+
"Requirement already satisfied: pandas>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.5.3)\n",
|
41 |
+
"Requirement already satisfied: scikit-learn>=1.1.3 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.2.2)\n",
|
42 |
+
"Requirement already satisfied: tensorboard>=2.10.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (2.15.2)\n",
|
43 |
+
"Requirement already satisfied: tqdm>=4.64.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.66.2)\n",
|
44 |
+
"Requirement already satisfied: jieba>=0.42.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (0.42.1)\n",
|
45 |
+
"Requirement already satisfied: gensim>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.3.2)\n",
|
46 |
+
"Requirement already satisfied: pillow>=9.3.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (9.4.0)\n",
|
47 |
+
"Requirement already satisfied: nltk>=3.7 in /usr/local/lib/python3.10/dist-packages (from faknow) (3.8.1)\n",
|
48 |
+
"Requirement already satisfied: sphinx-markdown-tables>=0.0.17 in /usr/local/lib/python3.10/dist-packages (from faknow) (0.0.17)\n",
|
49 |
+
"Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.2.1+cu121)\n",
|
50 |
+
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
|
51 |
+
"Requirement already satisfied: huggingface-hub>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.20.3)\n",
|
52 |
+
"Requirement already satisfied: build>=1.0.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.2.1)\n",
|
53 |
+
"Requirement already satisfied: requests>=2.28 in /usr/local/lib/python3.10/dist-packages (from chromadb) (2.31.0)\n",
|
54 |
+
"Requirement already satisfied: pydantic>=1.9 in /usr/local/lib/python3.10/dist-packages (from chromadb) (2.6.4)\n",
|
55 |
+
"Requirement already satisfied: chroma-hnswlib==0.7.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.7.3)\n",
|
56 |
+
"Requirement already satisfied: fastapi>=0.95.2 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.110.0)\n",
|
57 |
+
"Requirement already satisfied: uvicorn[standard]>=0.18.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.29.0)\n",
|
58 |
+
"Requirement already satisfied: posthog>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.5.0)\n",
|
59 |
+
"Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.10.0)\n",
|
60 |
+
"Requirement already satisfied: pulsar-client>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.4.0)\n",
|
61 |
+
"Requirement already satisfied: onnxruntime>=1.14.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.17.1)\n",
|
62 |
+
"Requirement already satisfied: opentelemetry-api>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
63 |
+
"Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
64 |
+
"Requirement already satisfied: opentelemetry-instrumentation-fastapi>=0.41b0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.45b0)\n",
|
65 |
+
"Requirement already satisfied: opentelemetry-sdk>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
66 |
+
"Requirement already satisfied: tokenizers>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.15.2)\n",
|
67 |
+
"Requirement already satisfied: pypika>=0.48.9 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.48.9)\n",
|
68 |
+
"Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (7.7.0)\n",
|
69 |
+
"Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/dist-packages (from chromadb) (6.4.0)\n",
|
70 |
+
"Requirement already satisfied: grpcio>=1.58.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.62.1)\n",
|
71 |
+
"Requirement already satisfied: bcrypt>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.1.2)\n",
|
72 |
+
"Requirement already satisfied: typer>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.9.4)\n",
|
73 |
+
"Requirement already satisfied: kubernetes>=28.1.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (29.0.0)\n",
|
74 |
+
"Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (8.2.3)\n",
|
75 |
+
"Requirement already satisfied: PyYAML>=6.0.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (6.0.1)\n",
|
76 |
+
"Requirement already satisfied: mmh3>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.1.0)\n",
|
77 |
+
"Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.10.0)\n",
|
78 |
+
"Requirement already satisfied: packaging>=19.1 in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (24.0)\n",
|
79 |
+
"Requirement already satisfied: pyproject_hooks in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (1.0.0)\n",
|
80 |
+
"Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (2.0.1)\n",
|
81 |
+
"Requirement already satisfied: starlette<0.37.0,>=0.36.3 in /usr/local/lib/python3.10/dist-packages (from fastapi>=0.95.2->chromadb) (0.36.3)\n",
|
82 |
+
"Requirement already satisfied: smart-open>=1.8.1 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->faknow) (6.4.0)\n",
|
83 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (3.13.3)\n",
|
84 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (2023.6.0)\n",
|
85 |
+
"Requirement already satisfied: certifi>=14.05.14 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2024.2.2)\n",
|
86 |
+
"Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.16.0)\n",
|
87 |
+
"Requirement already satisfied: python-dateutil>=2.5.3 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.8.2)\n",
|
88 |
+
"Requirement already satisfied: google-auth>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.27.0)\n",
|
89 |
+
"Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.7.0)\n",
|
90 |
+
"Requirement already satisfied: requests-oauthlib in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.4.1)\n",
|
91 |
+
"Requirement already satisfied: oauthlib>=3.2.2 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (3.2.2)\n",
|
92 |
+
"Requirement already satisfied: urllib3>=1.24.2 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.0.7)\n",
|
93 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (8.1.7)\n",
|
94 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (1.3.2)\n",
|
95 |
+
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (2023.12.25)\n",
|
96 |
+
"Requirement already satisfied: coloredlogs in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (15.0.1)\n",
|
97 |
+
"Requirement already satisfied: flatbuffers in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (24.3.25)\n",
|
98 |
+
"Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (3.20.3)\n",
|
99 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (1.12)\n",
|
100 |
+
"Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api>=1.2.0->chromadb) (1.2.14)\n",
|
101 |
+
"Requirement already satisfied: importlib-metadata<=7.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api>=1.2.0->chromadb) (7.0.0)\n",
|
102 |
+
"Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.63.0)\n",
|
103 |
+
"Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.24.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.24.0)\n",
|
104 |
+
"Requirement already satisfied: opentelemetry-proto==1.24.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.24.0)\n",
|
105 |
+
"Requirement already satisfied: opentelemetry-instrumentation-asgi==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
106 |
+
"Requirement already satisfied: opentelemetry-instrumentation==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
107 |
+
"Requirement already satisfied: opentelemetry-semantic-conventions==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
108 |
+
"Requirement already satisfied: opentelemetry-util-http==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
109 |
+
"Requirement already satisfied: setuptools>=16.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (67.7.2)\n",
|
110 |
+
"Requirement already satisfied: wrapt<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (1.14.1)\n",
|
111 |
+
"Requirement already satisfied: asgiref~=3.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-asgi==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (3.8.1)\n",
|
112 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.5.2->faknow) (2023.4)\n",
|
113 |
+
"Requirement already satisfied: monotonic>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb) (1.6)\n",
|
114 |
+
"Requirement already satisfied: backoff>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb) (2.2.1)\n",
|
115 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb) (0.6.0)\n",
|
116 |
+
"Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb) (2.16.3)\n",
|
117 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.28->chromadb) (3.3.2)\n",
|
118 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.28->chromadb) (3.6)\n",
|
119 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.1.3->faknow) (3.4.0)\n",
|
120 |
+
"Requirement already satisfied: markdown>=3.4 in /usr/local/lib/python3.10/dist-packages (from sphinx-markdown-tables>=0.0.17->faknow) (3.6)\n",
|
121 |
+
"Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (1.4.0)\n",
|
122 |
+
"Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (1.2.0)\n",
|
123 |
+
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (0.7.2)\n",
|
124 |
+
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (3.0.1)\n",
|
125 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.2.1)\n",
|
126 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.3)\n",
|
127 |
+
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
128 |
+
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
129 |
+
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
130 |
+
"Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (8.9.2.26)\n",
|
131 |
+
"Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.3.1)\n",
|
132 |
+
"Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.0.2.54)\n",
|
133 |
+
"Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (10.3.2.106)\n",
|
134 |
+
"Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.4.5.107)\n",
|
135 |
+
"Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.0.106)\n",
|
136 |
+
"Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.19.3)\n",
|
137 |
+
"Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
138 |
+
"Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.2.0)\n",
|
139 |
+
"Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers) (12.4.99)\n",
|
140 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.26.1->faknow) (0.4.2)\n",
|
141 |
+
"Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.14.0)\n",
|
142 |
+
"Requirement already satisfied: httptools>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.6.1)\n",
|
143 |
+
"Requirement already satisfied: python-dotenv>=0.13 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (1.0.1)\n",
|
144 |
+
"Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.19.0)\n",
|
145 |
+
"Requirement already satisfied: watchfiles>=0.13 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.21.0)\n",
|
146 |
+
"Requirement already satisfied: websockets>=10.4 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (12.0)\n",
|
147 |
+
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (5.3.3)\n",
|
148 |
+
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.4.0)\n",
|
149 |
+
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (4.9)\n",
|
150 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=7.0,>=6.0->opentelemetry-api>=1.2.0->chromadb) (3.18.1)\n",
|
151 |
+
"Requirement already satisfied: anyio<5,>=3.4.0 in /usr/local/lib/python3.10/dist-packages (from starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (3.7.1)\n",
|
152 |
+
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.10.0->faknow) (2.1.5)\n",
|
153 |
+
"Requirement already satisfied: humanfriendly>=9.1 in /usr/local/lib/python3.10/dist-packages (from coloredlogs->onnxruntime>=1.14.1->chromadb) (10.0)\n",
|
154 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->onnxruntime>=1.14.1->chromadb) (1.3.0)\n",
|
155 |
+
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.4.0->starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (1.3.1)\n",
|
156 |
+
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.4.0->starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (1.2.0)\n",
|
157 |
+
"Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.6.0)\n"
|
158 |
+
]
|
159 |
+
}
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"source": [],
|
165 |
+
"metadata": {
|
166 |
+
"id": "kG2sAMShgAOV"
|
167 |
+
},
|
168 |
+
"execution_count": 27,
|
169 |
+
"outputs": []
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"source": [
|
174 |
+
"import pandas as pd\n",
|
175 |
+
"import os\n",
|
176 |
+
"import chromadb\n",
|
177 |
+
"from chromadb.utils import embedding_functions\n",
|
178 |
+
"import math\n",
|
179 |
+
"\n",
|
180 |
+
"\n",
|
181 |
+
"\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"def create_domain_identification_database(vdb_path: str,collection_name:str , df: pd.DataFrame) -> None:\n",
|
185 |
+
" \"\"\"This function processes the dataframe into the required format, and then creates the following collections in a ChromaDB instance\n",
|
186 |
+
" 1. domain_identification_collection - Contains input text embeddings, and the metadata the other columns\n",
|
187 |
+
"\n",
|
188 |
+
" Args:\n",
|
189 |
+
" collection_name (str) : name of database collection\n",
|
190 |
+
" vdb_path (str): Relative path of the location of the ChromaDB instance.\n",
|
191 |
+
" df (pd.DataFrame): task scheduling dataset.\n",
|
192 |
+
"\n",
|
193 |
+
" \"\"\"\n",
|
194 |
+
"\n",
|
195 |
+
" #identify the saving location of the ChromaDB\n",
|
196 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
197 |
+
"\n",
|
198 |
+
" #extract the embedding from hugging face\n",
|
199 |
+
" embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=\"sentence-transformers/LaBSE\")\n",
|
200 |
+
"\n",
|
201 |
+
" #creating the collection\n",
|
202 |
+
" domain_identification_collection = chroma_client.create_collection(\n",
|
203 |
+
" name=collection_name,\n",
|
204 |
+
" embedding_function=embedding_function,\n",
|
205 |
+
" )\n",
|
206 |
+
"\n",
|
207 |
+
"\n",
|
208 |
+
" # the main text \"query\" that will be embedded\n",
|
209 |
+
" domain_identification_documents = [row.query for row in df.itertuples()]\n",
|
210 |
+
"\n",
|
211 |
+
" # the metadata\n",
|
212 |
+
" domain_identification_metadata = [\n",
|
213 |
+
" {\"domain\": row.domain , \"label\": row.label}\n",
|
214 |
+
" for row in df.itertuples()\n",
|
215 |
+
" ]\n",
|
216 |
+
"\n",
|
217 |
+
" #index\n",
|
218 |
+
" domain_ids = [\"domain_id \" + str(row.Index) for row in df.itertuples()]\n",
|
219 |
+
"\n",
|
220 |
+
"\n",
|
221 |
+
" length = len(df)\n",
|
222 |
+
" num_iteration = length / 166\n",
|
223 |
+
" num_iteration = math.ceil(num_iteration)\n",
|
224 |
+
"\n",
|
225 |
+
" start = 0\n",
|
226 |
+
" # start adding the the vectors\n",
|
227 |
+
" for i in range(num_iteration):\n",
|
228 |
+
" if i == num_iteration - 1 :\n",
|
229 |
+
" domain_identification_collection.add(documents=domain_identification_documents[start:], metadatas=domain_identification_metadata[start:], ids=domain_ids[start:])\n",
|
230 |
+
" else:\n",
|
231 |
+
" end = start + 166\n",
|
232 |
+
" domain_identification_collection.add(documents=domain_identification_documents[start:end], metadatas=domain_identification_metadata[start:end], ids=domain_ids[start:end])\n",
|
233 |
+
" start = end\n",
|
234 |
+
" return None\n",
|
235 |
+
"\n",
|
236 |
+
"\n",
|
237 |
+
"\n",
|
238 |
+
"def delete_collection_from_vector_db(vdb_path: str, collection_name: str) -> None:\n",
|
239 |
+
" \"\"\"Deletes a particular collection from the persistent ChromaDB instance.\n",
|
240 |
+
"\n",
|
241 |
+
" Args:\n",
|
242 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
243 |
+
" collection_name (str): Name of the collection to be deleted.\n",
|
244 |
+
" \"\"\"\n",
|
245 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
246 |
+
" chroma_client.delete_collection(collection_name)\n",
|
247 |
+
" return None\n",
|
248 |
+
"\n",
|
249 |
+
"\n",
|
250 |
+
"def list_collections_from_vector_db(vdb_path: str) -> None:\n",
|
251 |
+
" \"\"\"Lists all the available collections from the persistent ChromaDB instance.\n",
|
252 |
+
"\n",
|
253 |
+
" Args:\n",
|
254 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
255 |
+
" \"\"\"\n",
|
256 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
257 |
+
" print(chroma_client.list_collections())\n",
|
258 |
+
"\n",
|
259 |
+
"\n",
|
260 |
+
"def get_collection_from_vector_db(\n",
|
261 |
+
" vdb_path: str, collection_name: str\n",
|
262 |
+
") -> chromadb.Collection:\n",
|
263 |
+
" \"\"\"Fetches a particular ChromaDB collection object from the persistent ChromaDB instance.\n",
|
264 |
+
"\n",
|
265 |
+
" Args:\n",
|
266 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
267 |
+
" collection_name (str): Name of the collection which needs to be retrieved.\n",
|
268 |
+
" \"\"\"\n",
|
269 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
270 |
+
"\n",
|
271 |
+
" huggingface_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=\"sentence-transformers/LaBSE\")\n",
|
272 |
+
"\n",
|
273 |
+
"\n",
|
274 |
+
"\n",
|
275 |
+
"\n",
|
276 |
+
" collection = chroma_client.get_collection(\n",
|
277 |
+
" name=collection_name, embedding_function=huggingface_ef\n",
|
278 |
+
" )\n",
|
279 |
+
"\n",
|
280 |
+
" return collection\n",
|
281 |
+
"\n",
|
282 |
+
"\n",
|
283 |
+
"def retrieval( input_text : str,\n",
|
284 |
+
" num_results : int,\n",
|
285 |
+
" collection: chromadb.Collection ):\n",
|
286 |
+
"\n",
|
287 |
+
" \"\"\"fetches the domain name from the collection based on the semantic similarity\n",
|
288 |
+
"\n",
|
289 |
+
" args:\n",
|
290 |
+
" input_text : the received text which can be news , posts , or tweets\n",
|
291 |
+
" num_results : number of fetched examples from the collection\n",
|
292 |
+
" collection : the extracted collection from the database that we will fetch examples from\n",
|
293 |
+
"\n",
|
294 |
+
" \"\"\"\n",
|
295 |
+
"\n",
|
296 |
+
"\n",
|
297 |
+
" fetched_domain = collection.query(\n",
|
298 |
+
" query_texts = [input_text],\n",
|
299 |
+
" n_results = num_results,\n",
|
300 |
+
" )\n",
|
301 |
+
"\n",
|
302 |
+
" #extracting domain name and label from the featched domains\n",
|
303 |
+
"\n",
|
304 |
+
" domain = fetched_domain[\"metadatas\"][0][0][\"domain\"]\n",
|
305 |
+
" label = fetched_domain[\"metadatas\"][0][0][\"label\"]\n",
|
306 |
+
" distance = fetched_domain[\"distances\"][0][0]\n",
|
307 |
+
"\n",
|
308 |
+
" return domain , label , distance"
|
309 |
+
],
|
310 |
+
"metadata": {
|
311 |
+
"id": "-_UqusZqgAQP"
|
312 |
+
},
|
313 |
+
"execution_count": 28,
|
314 |
+
"outputs": []
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"source": [
|
319 |
+
"from transformers import pipeline\n",
|
320 |
+
"\n",
|
321 |
+
"\n",
|
322 |
+
"\n",
|
323 |
+
"\n",
|
324 |
+
"\n",
|
325 |
+
"\n",
|
326 |
+
"def english_information_extraction(text: str):\n",
|
327 |
+
"\n",
|
328 |
+
"\n",
|
329 |
+
"\n",
|
330 |
+
"\n",
|
331 |
+
" zeroshot_classifier = pipeline(\"zero-shot-classification\", model=\"MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33\")\n",
|
332 |
+
"\n",
|
333 |
+
" hypothesis_template_domain = \"This text is about {}\"\n",
|
334 |
+
" domain_classes = [\"women\" , \"muslims\" , \"tamil\" , \"sinhala\" , \"other\"]\n",
|
335 |
+
" domains_output= zeroshot_classifier(text, domain_classes , hypothesis_template=hypothesis_template_domain, multi_label=False)\n",
|
336 |
+
"\n",
|
337 |
+
" sentiment_discrimination_prompt = f\"the content of this text about {domains_output['labels'][0]} \"\n",
|
338 |
+
" hypothesis_template_sentiment = \"is {} sentiment\"\n",
|
339 |
+
" hypothesis_template_sentiment = sentiment_discrimination_prompt + hypothesis_template_sentiment\n",
|
340 |
+
"\n",
|
341 |
+
" sentiment_classes = [\"positive\" ,\"neutral\", \"negative\"]\n",
|
342 |
+
" sentiment_output= zeroshot_classifier(text, sentiment_classes , hypothesis_template=hypothesis_template_sentiment, multi_label=False)\n",
|
343 |
+
"\n",
|
344 |
+
" hypothesis_template_discrimination = \"is {}\"\n",
|
345 |
+
" hypothesis_template_discrimination = sentiment_discrimination_prompt + hypothesis_template_discrimination\n",
|
346 |
+
"\n",
|
347 |
+
" discrimination_classes = [\"hateful\" , \"not hateful\"]\n",
|
348 |
+
"\n",
|
349 |
+
" discrimination_output= zeroshot_classifier(text, discrimination_classes , hypothesis_template=hypothesis_template_discrimination, multi_label=False)\n",
|
350 |
+
"\n",
|
351 |
+
" domain_label , domain_score = domains_output[\"labels\"][0] , domains_output[\"scores\"][0]\n",
|
352 |
+
" sentiment_label , sentiment_score = sentiment_output[\"labels\"][0] , sentiment_output[\"scores\"][0]\n",
|
353 |
+
" discrimination_label , discrimination_score = discrimination_output[\"labels\"][0] , discrimination_output[\"scores\"][0]\n",
|
354 |
+
"\n",
|
355 |
+
" return {\"domain_label\" : domain_label,\n",
|
356 |
+
" \"domain_score\" : domain_score,\n",
|
357 |
+
" \"sentiment_label\" : sentiment_label,\n",
|
358 |
+
" \"sentiment_score\" : sentiment_score,\n",
|
359 |
+
" \"discrimination_label\" : discrimination_label,\n",
|
360 |
+
" \"discrimination_score\": discrimination_score}\n",
|
361 |
+
"\n",
|
362 |
+
"\n",
|
363 |
+
"\n"
|
364 |
+
],
|
365 |
+
"metadata": {
|
366 |
+
"id": "G9EL047MfDDY"
|
367 |
+
},
|
368 |
+
"execution_count": 29,
|
369 |
+
"outputs": []
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"source": [],
|
374 |
+
"metadata": {
|
375 |
+
"id": "jmzyvmLQgASa"
|
376 |
+
},
|
377 |
+
"execution_count": 29,
|
378 |
+
"outputs": []
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"source": [
|
383 |
+
"#the model\n",
|
384 |
+
"from typing import List, Optional, Tuple\n",
|
385 |
+
"\n",
|
386 |
+
"import torch\n",
|
387 |
+
"from torch import Tensor\n",
|
388 |
+
"from torch import nn\n",
|
389 |
+
"from transformers import RobertaModel\n",
|
390 |
+
"\n",
|
391 |
+
"from faknow.model.layers.layer import TextCNNLayer\n",
|
392 |
+
"from faknow.model.model import AbstractModel\n",
|
393 |
+
"from faknow.data.process.text_process import TokenizerFromPreTrained\n",
|
394 |
+
"import pandas as pd\n",
|
395 |
+
"import gdown\n",
|
396 |
+
"import os\n",
|
397 |
+
"\n",
|
398 |
+
"class _MLP(nn.Module):\n",
|
399 |
+
" def __init__(self,\n",
|
400 |
+
" input_dim: int,\n",
|
401 |
+
" embed_dims: List[int],\n",
|
402 |
+
" dropout_rate: float,\n",
|
403 |
+
" output_layer=True):\n",
|
404 |
+
" super().__init__()\n",
|
405 |
+
" layers = list()\n",
|
406 |
+
" for embed_dim in embed_dims:\n",
|
407 |
+
" layers.append(nn.Linear(input_dim, embed_dim))\n",
|
408 |
+
" layers.append(nn.BatchNorm1d(embed_dim))\n",
|
409 |
+
" layers.append(nn.ReLU())\n",
|
410 |
+
" layers.append(nn.Dropout(p=dropout_rate))\n",
|
411 |
+
" input_dim = embed_dim\n",
|
412 |
+
" if output_layer:\n",
|
413 |
+
" layers.append(torch.nn.Linear(input_dim, 1))\n",
|
414 |
+
" self.mlp = torch.nn.Sequential(*layers)\n",
|
415 |
+
"\n",
|
416 |
+
" def forward(self, x: Tensor) -> Tensor:\n",
|
417 |
+
" \"\"\"\n",
|
418 |
+
"\n",
|
419 |
+
" Args:\n",
|
420 |
+
" x (Tensor): shared feature from domain and text, shape=(batch_size, embed_dim)\n",
|
421 |
+
"\n",
|
422 |
+
" \"\"\"\n",
|
423 |
+
" return self.mlp(x)\n",
|
424 |
+
"\n",
|
425 |
+
"\n",
|
426 |
+
"class _MaskAttentionLayer(torch.nn.Module):\n",
|
427 |
+
" \"\"\"\n",
|
428 |
+
" Compute attention layer\n",
|
429 |
+
" \"\"\"\n",
|
430 |
+
" def __init__(self, input_size: int):\n",
|
431 |
+
" super(_MaskAttentionLayer, self).__init__()\n",
|
432 |
+
" self.attention_layer = torch.nn.Linear(input_size, 1)\n",
|
433 |
+
"\n",
|
434 |
+
" def forward(self,\n",
|
435 |
+
" inputs: Tensor,\n",
|
436 |
+
" mask: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:\n",
|
437 |
+
" weights = self.attention_layer(inputs).view(-1, inputs.size(1))\n",
|
438 |
+
" if mask is not None:\n",
|
439 |
+
" weights = weights.masked_fill(mask == 0, float(\"-inf\"))\n",
|
440 |
+
" weights = torch.softmax(weights, dim=-1).unsqueeze(1)\n",
|
441 |
+
" outputs = torch.matmul(weights, inputs).squeeze(1)\n",
|
442 |
+
" return outputs, weights\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
"class MDFEND(AbstractModel):\n",
|
446 |
+
" r\"\"\"\n",
|
447 |
+
" MDFEND: Multi-domain Fake News Detection, CIKM 2021\n",
|
448 |
+
" paper: https://dl.acm.org/doi/10.1145/3459637.3482139\n",
|
449 |
+
" code: https://github.com/kennqiang/MDFEND-Weibo21\n",
|
450 |
+
" \"\"\"\n",
|
451 |
+
" def __init__(self,\n",
|
452 |
+
" pre_trained_bert_name: str,\n",
|
453 |
+
" domain_num: int,\n",
|
454 |
+
" mlp_dims: Optional[List[int]] = None,\n",
|
455 |
+
" dropout_rate=0.2,\n",
|
456 |
+
" expert_num=5):\n",
|
457 |
+
" \"\"\"\n",
|
458 |
+
"\n",
|
459 |
+
" Args:\n",
|
460 |
+
" pre_trained_bert_name (str): the name or local path of pre-trained bert model\n",
|
461 |
+
" domain_num (int): total number of all domains\n",
|
462 |
+
" mlp_dims (List[int]): a list of the dimensions in MLP layer, if None, [384] will be taken as default, default=384\n",
|
463 |
+
" dropout_rate (float): rate of Dropout layer, default=0.2\n",
|
464 |
+
" expert_num (int): number of experts also called TextCNNLayer, default=5\n",
|
465 |
+
" \"\"\"\n",
|
466 |
+
" super(MDFEND, self).__init__()\n",
|
467 |
+
" self.domain_num = domain_num\n",
|
468 |
+
" self.expert_num = expert_num\n",
|
469 |
+
" self.bert = RobertaModel.from_pretrained(\n",
|
470 |
+
" pre_trained_bert_name).requires_grad_(False)\n",
|
471 |
+
" self.embedding_size = self.bert.config.hidden_size\n",
|
472 |
+
" self.loss_func = nn.BCELoss()\n",
|
473 |
+
" if mlp_dims is None:\n",
|
474 |
+
" mlp_dims = [384]\n",
|
475 |
+
"\n",
|
476 |
+
" filter_num = 64\n",
|
477 |
+
" filter_sizes = [1, 2, 3, 5, 10]\n",
|
478 |
+
" experts = [\n",
|
479 |
+
" TextCNNLayer(self.embedding_size, filter_num, filter_sizes)\n",
|
480 |
+
" for _ in range(self.expert_num)\n",
|
481 |
+
" ]\n",
|
482 |
+
" self.experts = nn.ModuleList(experts)\n",
|
483 |
+
"\n",
|
484 |
+
" self.gate = nn.Sequential(\n",
|
485 |
+
" nn.Linear(self.embedding_size * 2, mlp_dims[-1]), nn.ReLU(),\n",
|
486 |
+
" nn.Linear(mlp_dims[-1], self.expert_num), nn.Softmax(dim=1))\n",
|
487 |
+
"\n",
|
488 |
+
" self.attention = _MaskAttentionLayer(self.embedding_size)\n",
|
489 |
+
"\n",
|
490 |
+
" self.domain_embedder = nn.Embedding(num_embeddings=self.domain_num,\n",
|
491 |
+
" embedding_dim=self.embedding_size)\n",
|
492 |
+
" self.classifier = _MLP(320, mlp_dims, dropout_rate)\n",
|
493 |
+
"\n",
|
494 |
+
" def forward(self, token_id: Tensor, mask: Tensor,\n",
|
495 |
+
" domain: Tensor) -> Tensor:\n",
|
496 |
+
" \"\"\"\n",
|
497 |
+
"\n",
|
498 |
+
" Args:\n",
|
499 |
+
" token_id (Tensor): token ids from bert tokenizer, shape=(batch_size, max_len)\n",
|
500 |
+
" mask (Tensor): mask from bert tokenizer, shape=(batch_size, max_len)\n",
|
501 |
+
" domain (Tensor): domain id, shape=(batch_size,)\n",
|
502 |
+
"\n",
|
503 |
+
" Returns:\n",
|
504 |
+
" FloatTensor: the prediction of being fake, shape=(batch_size,)\n",
|
505 |
+
" \"\"\"\n",
|
506 |
+
" text_embedding = self.bert(token_id,\n",
|
507 |
+
" attention_mask=mask).last_hidden_state\n",
|
508 |
+
" attention_feature, _ = self.attention(text_embedding, mask)\n",
|
509 |
+
"\n",
|
510 |
+
" domain_embedding = self.domain_embedder(domain.view(-1, 1)).squeeze(1)\n",
|
511 |
+
"\n",
|
512 |
+
" gate_input = torch.cat([domain_embedding, attention_feature], dim=-1)\n",
|
513 |
+
" gate_output = self.gate(gate_input)\n",
|
514 |
+
"\n",
|
515 |
+
" shared_feature = 0\n",
|
516 |
+
" for i in range(self.expert_num):\n",
|
517 |
+
" expert_feature = self.experts[i](text_embedding)\n",
|
518 |
+
" shared_feature += (expert_feature * gate_output[:, i].unsqueeze(1))\n",
|
519 |
+
"\n",
|
520 |
+
" label_pred = self.classifier(shared_feature)\n",
|
521 |
+
"\n",
|
522 |
+
" return torch.sigmoid(label_pred.squeeze(1))\n",
|
523 |
+
"\n",
|
524 |
+
" def calculate_loss(self, data) -> Tensor:\n",
|
525 |
+
" \"\"\"\n",
|
526 |
+
" calculate loss via BCELoss\n",
|
527 |
+
"\n",
|
528 |
+
" Args:\n",
|
529 |
+
" data (dict): batch data dict\n",
|
530 |
+
"\n",
|
531 |
+
" Returns:\n",
|
532 |
+
" loss (Tensor): loss value\n",
|
533 |
+
" \"\"\"\n",
|
534 |
+
"\n",
|
535 |
+
" token_ids = data['text']['token_id']\n",
|
536 |
+
" masks = data['text']['mask']\n",
|
537 |
+
" domains = data['domain']\n",
|
538 |
+
" labels = data['label']\n",
|
539 |
+
" output = self.forward(token_ids, masks, domains)\n",
|
540 |
+
" return self.loss_func(output, labels.float())\n",
|
541 |
+
"\n",
|
542 |
+
" def predict(self, data_without_label) -> Tensor:\n",
|
543 |
+
" \"\"\"\n",
|
544 |
+
" predict the probability of being fake news\n",
|
545 |
+
"\n",
|
546 |
+
" Args:\n",
|
547 |
+
" data_without_label (Dict[str, Any]): batch data dict\n",
|
548 |
+
"\n",
|
549 |
+
" Returns:\n",
|
550 |
+
" Tensor: one-hot probability, shape=(batch_size, 2)\n",
|
551 |
+
" \"\"\"\n",
|
552 |
+
"\n",
|
553 |
+
" token_ids = data_without_label['text']['token_id']\n",
|
554 |
+
" masks = data_without_label['text']['mask']\n",
|
555 |
+
" domains = data_without_label['domain']\n",
|
556 |
+
"\n",
|
557 |
+
" # shape=(n,), data = 1 or 0\n",
|
558 |
+
" round_pred = torch.round(self.forward(token_ids, masks,\n",
|
559 |
+
" domains)).long()\n",
|
560 |
+
" # after one hot: shape=(n,2), data = [0,1] or [1,0]\n",
|
561 |
+
" one_hot_pred = torch.nn.functional.one_hot(round_pred, num_classes=2)\n",
|
562 |
+
" return one_hot_pred\n",
|
563 |
+
"\n",
|
564 |
+
"\n",
|
565 |
+
"def download_from_gdrive(file_id, output_path):\n",
|
566 |
+
" output = os.path.join(output_path)\n",
|
567 |
+
"\n",
|
568 |
+
" # Check if the file already exists\n",
|
569 |
+
" if not os.path.exists(output):\n",
|
570 |
+
" gdown.download(id=file_id, output=output, quiet=False)\n",
|
571 |
+
"\n",
|
572 |
+
"\n",
|
573 |
+
" return output\n",
|
574 |
+
"\n",
|
575 |
+
"\n",
|
576 |
+
"\n",
|
577 |
+
"def loading_model_and_tokenizer():\n",
|
578 |
+
" max_len, bert = 160, 'FacebookAI/xlm-roberta-base'\n",
|
579 |
+
" #https://drive.google.com/file/d/1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC/view\n",
|
580 |
+
"\n",
|
581 |
+
" file_id = \"1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC\"\n",
|
582 |
+
"\n",
|
583 |
+
" model_path = '/content/drive/MyDrive/models/last-epoch-model-2024-03-17-01_00_32_1.pth'\n",
|
584 |
+
"\n",
|
585 |
+
" MODEL_SAVE_PATH = download_from_gdrive(file_id, model_path)\n",
|
586 |
+
" domain_num = 4\n",
|
587 |
+
"\n",
|
588 |
+
"\n",
|
589 |
+
"\n",
|
590 |
+
" tokenizer = TokenizerFromPreTrained(max_len, bert)\n",
|
591 |
+
"\n",
|
592 |
+
" model = MDFEND(bert, domain_num , expert_num=12 , mlp_dims = [3010, 2024 ,1012 ,606 , 400])\n",
|
593 |
+
"\n",
|
594 |
+
" model.load_state_dict(torch.load(f=MODEL_SAVE_PATH , map_location=torch.device('cpu')))\n",
|
595 |
+
"\n",
|
596 |
+
" model.requires_grad_(False)\n",
|
597 |
+
"\n",
|
598 |
+
" return tokenizer , model"
|
599 |
+
],
|
600 |
+
"metadata": {
|
601 |
+
"id": "A4zYbG-AmxQd"
|
602 |
+
},
|
603 |
+
"execution_count": 51,
|
604 |
+
"outputs": []
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"source": [
|
609 |
+
"import pandas as pd\n",
|
610 |
+
"import torch\n",
|
611 |
+
"def preparing_data(text:str , domain: int):\n",
|
612 |
+
" \"\"\"\n",
|
613 |
+
"\n",
|
614 |
+
"\n",
|
615 |
+
"\n",
|
616 |
+
" Args:\n",
|
617 |
+
" text (_str_): input text from the user\n",
|
618 |
+
" domain (_int_): output domain from domain identification pipeline\n",
|
619 |
+
"\n",
|
620 |
+
" Returns:\n",
|
621 |
+
" _DataFrame_: dataframe contains texts and domain\n",
|
622 |
+
" \"\"\"\n",
|
623 |
+
" # Let's assume you have the following dictionary\n",
|
624 |
+
" # the model can't do inference with only one example so this dummy example must be put\n",
|
625 |
+
" dict_data = {\n",
|
626 |
+
" 'text': ['hello world' ] ,\n",
|
627 |
+
" 'domain': [0] ,\n",
|
628 |
+
" }\n",
|
629 |
+
"\n",
|
630 |
+
" dict_data[\"text\"].append(text)\n",
|
631 |
+
" dict_data[\"domain\"].append(domain)\n",
|
632 |
+
" # Convert the dictionary to a DataFrame\n",
|
633 |
+
" df = pd.DataFrame(dict_data)\n",
|
634 |
+
"\n",
|
635 |
+
" # return the dataframe\n",
|
636 |
+
" return df\n",
|
637 |
+
"\n",
|
638 |
+
"\n",
|
639 |
+
"def loading_data(tokenizer , df: pd.DataFrame ):\n",
|
640 |
+
" ids = []\n",
|
641 |
+
" masks = []\n",
|
642 |
+
" domain_list = []\n",
|
643 |
+
"\n",
|
644 |
+
" texts = df[\"text\"]\n",
|
645 |
+
" domains= df[\"domain\"]\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
" for i in range(len(df)):\n",
|
649 |
+
" text = texts[i]\n",
|
650 |
+
" token = tokenizer(text)\n",
|
651 |
+
" ids.append(token[\"token_id\"])\n",
|
652 |
+
" masks.append(token[\"mask\"])\n",
|
653 |
+
" domain_list.append(domains[i])\n",
|
654 |
+
"\n",
|
655 |
+
" input_ids = torch.cat(ids , dim=0)\n",
|
656 |
+
" input_masks = torch.cat(masks ,dim = 0)\n",
|
657 |
+
" input_domains = torch.tensor(domain_list)\n",
|
658 |
+
"\n",
|
659 |
+
"\n",
|
660 |
+
" return input_ids , input_masks , input_domains"
|
661 |
+
],
|
662 |
+
"metadata": {
|
663 |
+
"id": "63oO220bidnk"
|
664 |
+
},
|
665 |
+
"execution_count": 31,
|
666 |
+
"outputs": []
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "code",
|
670 |
+
"source": [
|
671 |
+
"import torch\n",
|
672 |
+
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
|
673 |
+
"\n",
|
674 |
+
"def language_identification(texts):\n",
|
675 |
+
" text = [\n",
|
676 |
+
" texts,\n",
|
677 |
+
"\n",
|
678 |
+
" ]\n",
|
679 |
+
"\n",
|
680 |
+
" model_ckpt = \"papluca/xlm-roberta-base-language-detection\"\n",
|
681 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_ckpt)\n",
|
682 |
+
" model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)\n",
|
683 |
+
"\n",
|
684 |
+
" inputs = tokenizer(text, padding=True, truncation=True, return_tensors=\"pt\")\n",
|
685 |
+
"\n",
|
686 |
+
" with torch.no_grad():\n",
|
687 |
+
" logits = model(**inputs).logits\n",
|
688 |
+
"\n",
|
689 |
+
" preds = torch.softmax(logits, dim=-1)\n",
|
690 |
+
"\n",
|
691 |
+
" # Map raw predictions to languages\n",
|
692 |
+
" id2lang = model.config.id2label\n",
|
693 |
+
" vals, idxs = torch.max(preds, dim=1)\n",
|
694 |
+
" lang_dict = {id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}\n",
|
695 |
+
" return lang_dict"
|
696 |
+
],
|
697 |
+
"metadata": {
|
698 |
+
"id": "mBrwFI_wPxtU"
|
699 |
+
},
|
700 |
+
"execution_count": 32,
|
701 |
+
"outputs": []
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"cell_type": "code",
|
705 |
+
"source": [
|
706 |
+
"from google.colab import drive\n",
|
707 |
+
"drive.mount('/content/drive')"
|
708 |
+
],
|
709 |
+
"metadata": {
|
710 |
+
"colab": {
|
711 |
+
"base_uri": "https://localhost:8080/"
|
712 |
+
},
|
713 |
+
"id": "yuFVY6cZidqI",
|
714 |
+
"outputId": "766ef226-ad9a-444c-eff8-d02923ff1b7d"
|
715 |
+
},
|
716 |
+
"execution_count": 33,
|
717 |
+
"outputs": [
|
718 |
+
{
|
719 |
+
"output_type": "stream",
|
720 |
+
"name": "stdout",
|
721 |
+
"text": [
|
722 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
723 |
+
]
|
724 |
+
}
|
725 |
+
]
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"cell_type": "code",
|
729 |
+
"source": [
|
730 |
+
"\n",
|
731 |
+
"def run_pipeline(input_text:str):\n",
|
732 |
+
"\n",
|
733 |
+
" language_dict = language_identification(input_text)\n",
|
734 |
+
" language_code = next(iter(language_dict))\n",
|
735 |
+
"\n",
|
736 |
+
" if language_code == \"en\":\n",
|
737 |
+
"\n",
|
738 |
+
" output_english = english_information_extraction(input_text)\n",
|
739 |
+
"\n",
|
740 |
+
" return output_english\n",
|
741 |
+
"\n",
|
742 |
+
" else:\n",
|
743 |
+
"\n",
|
744 |
+
"\n",
|
745 |
+
" num_results = 1\n",
|
746 |
+
" path = \"/content/drive/MyDrive/general_domains/vector_database\"\n",
|
747 |
+
" collection_name = \"general_domains\"\n",
|
748 |
+
"\n",
|
749 |
+
"\n",
|
750 |
+
" collection = get_collection_from_vector_db(path , collection_name)\n",
|
751 |
+
"\n",
|
752 |
+
" domain , label_domain , distance = retrieval(input_text , num_results , collection )\n",
|
753 |
+
"\n",
|
754 |
+
" if distance >1.45:\n",
|
755 |
+
" domain = \"undetermined\"\n",
|
756 |
+
"\n",
|
757 |
+
" tokenizer , model = loading_model_and_tokenizer()\n",
|
758 |
+
"\n",
|
759 |
+
" df = preparing_data(input_text , label_domain)\n",
|
760 |
+
"\n",
|
761 |
+
" input_ids , input_masks , input_domains = loading_data(tokenizer , df )\n",
|
762 |
+
"\n",
|
763 |
+
" labels = []\n",
|
764 |
+
" outputs = []\n",
|
765 |
+
" with torch.no_grad():\n",
|
766 |
+
"\n",
|
767 |
+
" pred = model.forward(input_ids, input_masks , input_domains)\n",
|
768 |
+
" labels.append([])\n",
|
769 |
+
"\n",
|
770 |
+
" for output in pred:\n",
|
771 |
+
" number = output.item()\n",
|
772 |
+
" label = int(1) if number >= 0.5 else int(0)\n",
|
773 |
+
" labels[-1].append(label)\n",
|
774 |
+
" outputs.append(pred)\n",
|
775 |
+
"\n",
|
776 |
+
" discrimination_class = [\"discriminative\" if i == int(1) else \"not discriminative\" for i in labels[0]]\n",
|
777 |
+
"\n",
|
778 |
+
"\n",
|
779 |
+
" return { \"domain_label\" :domain ,\n",
|
780 |
+
" \"domain_score\":distance ,\n",
|
781 |
+
" \"discrimination_label\" : discrimination_class[-1],\n",
|
782 |
+
" \"discrimination_score\" : outputs[0][1:].item(),\n",
|
783 |
+
" }\n",
|
784 |
+
"\n",
|
785 |
+
"\n",
|
786 |
+
"\n",
|
787 |
+
"\n",
|
788 |
+
"\n",
|
789 |
+
"\n",
|
790 |
+
"\n",
|
791 |
+
"\n",
|
792 |
+
"\n",
|
793 |
+
"\n",
|
794 |
+
"\n",
|
795 |
+
"\n",
|
796 |
+
"\n",
|
797 |
+
"\n"
|
798 |
+
],
|
799 |
+
"metadata": {
|
800 |
+
"id": "HlBJF4NQgAVy"
|
801 |
+
},
|
802 |
+
"execution_count": 34,
|
803 |
+
"outputs": []
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"cell_type": "code",
|
807 |
+
"source": [
|
808 |
+
"input_text_1 = input(\"input text:\")\n",
|
809 |
+
"\n",
|
810 |
+
"output_1 = run_pipeline( input_text_1)"
|
811 |
+
],
|
812 |
+
"metadata": {
|
813 |
+
"colab": {
|
814 |
+
"base_uri": "https://localhost:8080/"
|
815 |
+
},
|
816 |
+
"id": "1BVBXyRDnDg4",
|
817 |
+
"outputId": "de9a4f3e-4ad4-4d03-8d51-b3df05daa685"
|
818 |
+
},
|
819 |
+
"execution_count": 35,
|
820 |
+
"outputs": [
|
821 |
+
{
|
822 |
+
"name": "stdout",
|
823 |
+
"output_type": "stream",
|
824 |
+
"text": [
|
825 |
+
"input text:muslims loves their prophet muhammed\n"
|
826 |
+
]
|
827 |
+
}
|
828 |
+
]
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"cell_type": "code",
|
832 |
+
"source": [
|
833 |
+
"output_1"
|
834 |
+
],
|
835 |
+
"metadata": {
|
836 |
+
"colab": {
|
837 |
+
"base_uri": "https://localhost:8080/"
|
838 |
+
},
|
839 |
+
"id": "TnnB40tEnIHI",
|
840 |
+
"outputId": "752bc3bd-93ac-46be-9d1a-308c6fc267ed"
|
841 |
+
},
|
842 |
+
"execution_count": 36,
|
843 |
+
"outputs": [
|
844 |
+
{
|
845 |
+
"output_type": "execute_result",
|
846 |
+
"data": {
|
847 |
+
"text/plain": [
|
848 |
+
"{'domain_label': 'muslims',\n",
|
849 |
+
" 'domain_score': 0.9989225268363953,\n",
|
850 |
+
" 'sentiment_label': 'positive',\n",
|
851 |
+
" 'sentiment_score': 0.9239600300788879,\n",
|
852 |
+
" 'discrimination_label': 'not hateful',\n",
|
853 |
+
" 'discrimination_score': 0.9917498826980591}"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
"metadata": {},
|
857 |
+
"execution_count": 36
|
858 |
+
}
|
859 |
+
]
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"cell_type": "code",
|
863 |
+
"source": [
|
864 |
+
"input_text_2 = input(\"input text:\")\n",
|
865 |
+
"\n",
|
866 |
+
"output_2 = run_pipeline( input_text_2)"
|
867 |
+
],
|
868 |
+
"metadata": {
|
869 |
+
"id": "LBAvmrE1QxM3",
|
870 |
+
"colab": {
|
871 |
+
"base_uri": "https://localhost:8080/"
|
872 |
+
},
|
873 |
+
"outputId": "45056e2c-701c-40c0-9a04-36710cc1bdbd"
|
874 |
+
},
|
875 |
+
"execution_count": 54,
|
876 |
+
"outputs": [
|
877 |
+
{
|
878 |
+
"name": "stdout",
|
879 |
+
"output_type": "stream",
|
880 |
+
"text": [
|
881 |
+
"input text:මුස්ලිම්වරු ඔවුන්ගේ අනාගතවක්තෘ මුහම්මද්ට ආදරෙයි\n"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"output_type": "stream",
|
886 |
+
"name": "stderr",
|
887 |
+
"text": [
|
888 |
+
"Downloading...\n",
|
889 |
+
"From (original): https://drive.google.com/uc?id=1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC\n",
|
890 |
+
"From (redirected): https://drive.google.com/uc?id=1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC&confirm=t&uuid=4bc00ac8-29e3-458b-a64d-c0f583a18df7\n",
|
891 |
+
"To: /content/drive/MyDrive/models/last-epoch-model-2024-03-17-01_00_32_1.pth\n",
|
892 |
+
"100%|██████████| 1.20G/1.20G [00:17<00:00, 69.1MB/s]\n",
|
893 |
+
"You are using a model of type xlm-roberta to instantiate a model of type roberta. This is not supported for all configurations of models and can yield errors.\n"
|
894 |
+
]
|
895 |
+
}
|
896 |
+
]
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"cell_type": "code",
|
900 |
+
"source": [
|
901 |
+
"output_2"
|
902 |
+
],
|
903 |
+
"metadata": {
|
904 |
+
"colab": {
|
905 |
+
"base_uri": "https://localhost:8080/"
|
906 |
+
},
|
907 |
+
"id": "ienC5lZvYjcu",
|
908 |
+
"outputId": "25eb47ee-f219-4ce0-915b-5fd3acb54414"
|
909 |
+
},
|
910 |
+
"execution_count": 55,
|
911 |
+
"outputs": [
|
912 |
+
{
|
913 |
+
"output_type": "execute_result",
|
914 |
+
"data": {
|
915 |
+
"text/plain": [
|
916 |
+
"{'domain_label': 'muslims',\n",
|
917 |
+
" 'domain_score': 0.9477148933517974,\n",
|
918 |
+
" 'discrimination_label': 'not discriminative',\n",
|
919 |
+
" 'discrimination_score': 0.016480498015880585}"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
"metadata": {},
|
923 |
+
"execution_count": 55
|
924 |
+
}
|
925 |
+
]
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"cell_type": "code",
|
929 |
+
"source": [
|
930 |
+
"input_text_3 = input(\"input text:\")\n",
|
931 |
+
"\n",
|
932 |
+
"output_3 = run_pipeline( input_text_3)"
|
933 |
+
],
|
934 |
+
"metadata": {
|
935 |
+
"colab": {
|
936 |
+
"base_uri": "https://localhost:8080/"
|
937 |
+
},
|
938 |
+
"id": "kCe3FS5lYyQ7",
|
939 |
+
"outputId": "5ec7d2fd-3aa9-4e35-b4bf-2d1db4777aba"
|
940 |
+
},
|
941 |
+
"execution_count": 56,
|
942 |
+
"outputs": [
|
943 |
+
{
|
944 |
+
"name": "stdout",
|
945 |
+
"output_type": "stream",
|
946 |
+
"text": [
|
947 |
+
"input text:முஸ்லீம்கள் தங்கள் தீர்க்கதரிசியை நேசிக்கிறார்கள்\n"
|
948 |
+
]
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"output_type": "stream",
|
952 |
+
"name": "stderr",
|
953 |
+
"text": [
|
954 |
+
"You are using a model of type xlm-roberta to instantiate a model of type roberta. This is not supported for all configurations of models and can yield errors.\n"
|
955 |
+
]
|
956 |
+
}
|
957 |
+
]
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"cell_type": "code",
|
961 |
+
"source": [
|
962 |
+
"output_3"
|
963 |
+
],
|
964 |
+
"metadata": {
|
965 |
+
"colab": {
|
966 |
+
"base_uri": "https://localhost:8080/"
|
967 |
+
},
|
968 |
+
"id": "4gCBAROLaDNK",
|
969 |
+
"outputId": "dd50be33-030c-4ea4-d2ca-5cd513eb3f0b"
|
970 |
+
},
|
971 |
+
"execution_count": 57,
|
972 |
+
"outputs": [
|
973 |
+
{
|
974 |
+
"output_type": "execute_result",
|
975 |
+
"data": {
|
976 |
+
"text/plain": [
|
977 |
+
"{'domain_label': 'muslims',\n",
|
978 |
+
" 'domain_score': 0.9295339941122466,\n",
|
979 |
+
" 'discrimination_label': 'not discriminative',\n",
|
980 |
+
" 'discrimination_score': 0.011930261738598347}"
|
981 |
+
]
|
982 |
+
},
|
983 |
+
"metadata": {},
|
984 |
+
"execution_count": 57
|
985 |
+
}
|
986 |
+
]
|
987 |
+
}
|
988 |
+
]
|
989 |
+
}
|